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Glossary of Symbols 

The common set of symbols used throughout this report is listed in this glossary. Ap
pearing with each symbol is its name and the page number where it is defined, discussed, 
or first used. 

Some of these symbols appear in the text of the report in several different forms, 
e..~., in boldface or italic type, in upper or lower case, with or without an underline, or 
possibly subscripted in different ways. The form of a symbol usually conveys additional 
meaning beyond the basic meaning given in the table below. This additional meaning is 
aplained in Section 1.3 or in the text where a particular form is used. As an additional 
aid to understanding some of the more complicated notation, examples of the different 
tiJnns used with vector phasors and ratios of phasors are reviewed below. 

Vector phasors such as B, D, E, H, and J. are directed quantities which vary in space 
and time as described in Section 1.3. The notational conventions associated with vector 
pLasors are shown below for the symbol E, defined in the table of symbols as "electric 
&eld intensity." In Section 1.3, several different forms of this symbol are described with 
merence to a three-dimensional space. To understand the notation, it is helpful to keep 
in mind that boldface type signifies a vector with three spatial components, and an 
anderline means "complex." 

• E electric-field-intensity vector phasor consisting of a phasor (complex number) 
in each of the three spatial coordinate directions 

• E11 ( complex number) phasor that is the y-directed component of the electric-
field-intensity vector phasor 

• E electric-field-intensity vector at some instant in time, consisting of three time
varying quantities, one in each of the spatial coordinate directions 

• E11 (real number) y-directed component of the electric-field-intensity vector at 
some instant in time 

• IE11 (x)I (real number) rms magnitude of the phasor that is the y-directed com
ponent of the electric-field-intensity vector phasor, as a function of x 

• Re(E11 ) (real number) real part of the phasor that is the y-directed component 
of the electric-field-intensity vector phasor 
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Another set of notational conventions applies to ratios of phasors such as the im
pedance Z and the admittance Y. For example, Z appears in Chapter 7 in several 
forms: 

• [Z] complex impedance matrix 

• k 4 complex impedance of element in 3rd row 4th column of [Z] 

• [ Z'] "referred" form of [ Z] 

• [Zr] "reduced" complex impedance matrix obtained from [Z'] 

• Zr 23 complex impedance element of the matrix [Zr]. The element is a linear 
' combination of short-circuit impedances involving windings 3 and 4. 

• Z (a4) complex short-circuit impedance between windings 3 and 4 

• ~ 4 complex impedance element in a circuit. This symbol is not actually found in 
the report, but its inverse, the complex admittance element 1t:3

4
, does appear. 

The table of symbols is alphabetized as follows. The relative order of two symbols 
is determined by the first pair of non-matching characters in the two symbols being 
compared. The order of the symbols is the same as the order of the two characters in 
an outline with the following hierarchy of headings: 

1. Alphabet: Arabic, Greek, numerals, other characters' 

2. Case: upper, lower 

3. Style: bold, italic, special, Roman 

4. Letter: No next character, meaning the end of a symbol, comes before additional 
characters. 

To form the outline, the four items in the third level "Style:" appear as subheadings for 
each of the items in the next higher level "Case:", and so on. According to this outline, 
the italicized upper-case W comes before the upper-case special character (subscript) w, 
which comes before the lower-case w. Greek letters follow all Arabic letters. 

If a particular symbol is not found in the table, its root and subscript are probably 
listed separately. The page numbers refer to Part I of this report. If "Part II" is given 
in the page-number column, the symbol first appears in Part II of the report, and a 
page reference is listed instead in the glossary near the front of Part II. SI _units are used 
throughout. 
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II Symbol 

A 
AWG 

ax, ay, az 
B 

BASE 

b 

bcu 

bmaz 

bw 

bwin 

bob 

C 

C 

c.m. 

cu 

D 

d 

dcu 

do 

E 

E 

e 

F1,F2 

Fs,F4 

I 
I_ 

9a 

9inters 

9intras 

9n 

Glossary of Symbols 

Meaning 

cross-sectional area 
American Wire Gauge 

unit vectors in the reference directions x, y, and z 

magnetic flux density, a vector 

(subscript) basis value for normalizing a variable 

breadth 
breadth of each conductor in a winding layer 

maximum breadth available in which to place a winding 

breadth of a winding layer 

breadth of the core window; bwin ~ bmaz ~ bw 

(subscript) "bobbin" 

(subscript) "cross-section" 

(subscript) "critical" 

units of circular mils; 1 c.m. = 5.067 x 10-10 m2 

(subscript) copper, or more generally, the conductor 

electric flux density, a vector 

(subscript) "dissipated" 

diameter of the conductor alone in a round wire 
outside diameter of a wire, including insulation 

electric field intensity, a vector phasor 

(subscript) "eddy-current" 

(subscript) "excited-winding" 

constant, 2. 71828 

dimensionless functions of a, where a= hcu/8 

dimensionless functions of a, where a= hcu/8 

frequency 

magnetomotive force, a vector phasor 

"additional" interlayer gap, a length used to correct the cal-
culations 

gap between surfaces of conducting layers of adjacent winding 

gap between surfaces of conducting layers within a winding 

gap height between winding layers n and n + 1 

(continued) 
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19 
156 

9 

A-1 

9 

36 
15 

15 

15 

15 

156 

31 

89 

156 

15 

A-1 

56 

16 
16 

58 

45 

137 

8 

118 

123 

72 

136 

159 

159 

159 

147 



II Symbol 

9n 

H 
)ljk 

H(jk) 

H(;k)(lm) 

HF 

hcu 

ht 

I 

I 
[I] 
I; 

Im 
Im 

I 

J 
J 

(jk) 

K 

KT 

k 

k 
L 

LF 

Glossary of Symbols 

Meaning 

(subscript) "in interlayer gap number n" 

magnetic field intensity, a vector phasor 

gain of the voltage source in secondary j that is controlled 
by the current in secondary k 

magnetic field intensity in the z-direction with winding j ex-
cited and winding k short-circuited 

product of H(;k) and H(lm.) 

"high-frequency" 

height of copper in a layer of foil, strip, or equivalent rectan-
gular conductors 

height of insulating tape 

a constant value of current, rms unless indicated otherwise 
by a subscript 

complex current phasor 

identity matrix 

integral expression j 

magnetizing current phasor 

"imaginary" operator to signify "imaginary part of ... " 

instantaneous current 
current density, a vector phasor 

y'-1 
winding number 

row index of a matrix 
(subscript) refers to a short-circuit test where winding j is 

excited and winding k is short-circuited 

total number of windings in a transformer 

temperature coefficient of resistivity; KT 
0-m/°C for annealed copper wire [22, p. 

winding number 

column index of a matrix 
complex wave number 

inductance 
"low-frequency" 

(continued) 

X 

= 3.93 X 10-n 
E-88] 

' 

136 

53 

226 

133 

232 

179 

15 

156 

8 

8 

216 

G-2 

131 

67 

8 
60 

8 
129 

191 
129 

190 

156 

129 

191 
58 

130 
179 



Glossary of Symbols (continued) 

II Symbol Meaning 
Page II 

Lc;1c) short-circuit inductance at winding j with winding k short- 149 
circuited 

L1.n leakage inductance associated with winding n 130 

Lm magnetizing inductance 130 

£. length 19 
l loop 34 

lgn ··"length of turn" for the interlayer gap number n 147 

lm magnetic path length- - Part II 

£.T length of turn in a winding layer 16 

f ( subscript) "layer" 16 
(subscript) "leakage" 130 

M mutual inductance 191 
Ne number of current-carrying conductors in a winding layer; 16 

Ne= n8 Nt 

N; number of turns iri winding j 26 

Nt number of turns in one winding layer 16 

-N (subscript) "normalized" 9 

n number of turns per meter across the breadth of a winding 37 
layer or interlayer-gap number, counted from the innermost 112 

outward 
ns number of electrically-paralleled conductors with the same 16 

height coordinate 

n (subscript) layer number 112 

oc (subscript) "open-circuit" 130 
p power 139 

<Pv> average power dissipated in all the windings of a transformer 139 

PR(ik) power dissipated in a resistance Rc;1c) 139 

Pn total power dissipated in winding layer n 112 
p permeance Part II 

Pd power dissipated per unit volume (power density) 56 

<Qn > average magnetic energy storage per square meter in the y-z 123 
, plane 

( continued) 
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Glossary of Symbols ( continued) 

II Symbol Meaning 
Page II 

<QJ > average power dissipated per square meter of current sheet 119 
in the y-z plane 

< Qil > normalized average magnetic energy storage in a layer, a di- 123 
mensionless function of a, /3, and .6. 

<Qj > normalized average power dissipation in a layer, a dimension- 119 
less function of a, (3, and .6. 

R resistance 19 
radius 31 

Re. core loss resistance 130 
Rc;1c) short-circuit resistance at winding j with winding k short- 149 

circuited 

Rwn resistance of winding n 130 

R ( subscript) "ring" 31 

R, reluctance 24 
Re "real" operator to signify "real part of ... " 8 
r "radius" direction in a cylindrical coordinate system where a 34 

point is specified as (r, </>, z); distance in the radius direction 

r (subscript) "reduced" 200 

s surface 34 
s,. center-to-center distance between two adjacent layers of the 18 

same winding section 

s,.8 center-to-center distance between two adjacent layers of dif- 18 
ferent winding sections 

Sa center-to-center distance between two adjacent sections of the 18 
same winding 

s (subscript) "secondary" 226 

SC (subscript) "short-circuit" 8 

s,; (subscript) "secondary j" 226 

T period of a waveform 113 

temperature Part II 

Ts switching period Part II 

TEM "transverse electromagnetic" 105 

T (subscript) "total" 144 

( continued) 
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11 Symbru 

. 1' 

t 
_(t) 

[L4] 

V 

V 'k -J 

Vn 
V 

w 
w 

<Wg > 

WL(ik) 

<Wt> 

Wn 

<WT> 

Wm 

Xbob 

x,y,z 

X 

y 

Ybob 

y.k -J 

Glossary of Symbols (continued) 

Meaning 

(superscript) transpose of a matrix or vector 

time 
"time" as an independent variable; indicates that the preced-

ing quantity is instantaneous or time-varying 

vector of differential voltages V ;4, all referenced to terminal 4 

complex voltage phasor 

differential-voltage phasor between terminals j and k 

volume of winding layer n 

instantaneous voltage 

distance from X = hcu, in the negative X direction, in units 
of skin depth; v = (hcu - X)/8; v=w-.6. 

energy 

distance measured along the X-axis in units of skin depth 8; 
w =X/8 

time-average magnetic energy stored in all the interlayer gaps 
of a transformer 

magnetic energy stored in an inductance L(ik) 

time-average magnetic energy stored in all the winding layers 
of a transformer 

magnetic energy stored in winding layer n 

total time-average magnetic energy stored in a transformer 

magnetic energy stored per unit volume ( energy density) 

height of the center leg of the bobbin 

the three axes in a right-handed Cartesian coordinate system 
which correspond to the dimensions of height, depth, and 
breadth respectively; distance in the corresponding refer-
ence direction; as subscripts, a quantity in the designated 
direction 

( actually the Greek letter chi) variable denoting a position 
across the finite dimension of an infinite current sheet 

admittance 
depth of the center leg of the bobbin 

admittance element between terminals 
admittance-link equivalent circuit 

( continued) 
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J and k of the 

200 

7 
7 

200 

8 

199 

113 

177 

E-3 

112 

117 

144 

144 

144 

112 

144 

56 

156 

55 

66 

190 
156 

205 



Glossary of Symbols (continued) 

II Symbol I Meaning 
Page II 

Yo distance across the windings in the y direction 158 

Y; expression J F-1 

Jl.;k admittance of branches or "links" in equivalent circuit 205 

z impedance 8 

z(jk) short-circuit impedance with winding j excited and winding 149 
k short-circuit 

[Zs] coupled-secondaries equivalent-circuit impedance matrix 228 

Zn (subscript) component in z-direction in layer n 136 

a real part of the boundary-condition ratio £. 67 

/3 imaginary part of the boundary-condition ratio £. 67 

r. boundary-condition ratio; £. = a + j f3 67 

a height of a winding layer in skin depths; A = hcu/ 8 117 

8 skin depth; 8 = 2/wµu 59 

e variable which is either 1 or O depending upon the magnetic- 68 
field-intensity boundary conditions 

f permittivity 58 

fr relative permittivity; Er = Ej Eo A-2 

fQ permittivity of free space, 8.854 x 10-12 [F /m] 58 
,, layer porosity; 1J = Ncbcu/bwin 22 
(} phase angle 8 

A flux linkage Part II 

.X wavelength D-8 

µ permeability 23 

µr relative permeability; µr = µ/ µo A-2 

µo permeability of free space, 4,r x 10-7 [H/m] 23 

1,1 volume; dv is a differential volume element 112 
,r constant, 3.14159 72 

p resistivity in general, which could be the actual resistivity of 
a material or an "effective" resistivity; p = 1/u 

charge density A-1 

(continued) 
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Glossary of Symbols (continued) 

II Symbol I Meaning 
Page II 

Pcu resistivity of copper; for annealed copper wire: 164 
1. 7241 x· 10-8 n-m at 20°C with temperature coefficient 

, 3.93 X 10-11 0-m/°C [22, p. E-88]; Pcu = 1.8813 X 10-8n-m 
·at 60°C 

(T conductivity in general, which could be the actual conductiv- 19 
ity of a material or an "effective" conductivity 

<Tcu conductivity of copper; <Tcu = 1/ Pcu = 5.315 X 10-7 S/m at 164 
60°C 

<Tefl effective conductivity; replaces the u in the equations of Part I 126 
when calculating for equivalent-foil windings; <Teff = 1J<Tcu 

<I> flux phasor Part II 

</> instantaneous magnetic flux 24 
the angle dimension in a cylindrical coordinate system where 53 

a point is specified as ( r, </>, z) 
X variable denoting a position across the finite dimension of an 66 

infinite current sheet 
w angular frequency of a periodic waveform 8 
I prime, the identifier for a circuit-element value which has 195 

been multiplied by a transformer turns ratio to reflect it 
from its original-winding location to a location in another 
winding circuit 

* (superscript) "star," meaning the complex conjugate of the 116 
preceding quantity 

<-> angle brackets, denoting the time average of the enclosed 8 
quantity 

- block-partitioned matrix 216 
complex quantity D-3 
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Chapter 1 

Introduction 

There are many advantages to using high excitation frequencies in power conditioning 
circuits. One of the most important of these advantages is the reduction in transformer 
size that can be achieved as the frequency increases. Other benefits which are not · 
related to the transformer magnetic structure include a decrease in the size of output 
filter inductors and capacitors, faster output response to changes in input voltage, and 
easier filtering of radiated switching noise. 

High-frequency excitation clearly has advantages in power conditioning circuits, but 
as with all things there must also be associated drawbacks. In this case, the drawbacks 
arise due to the so-called skin and proximity effects which cause the currents in the 
transformer windings to distribute unevenly over the cross-sectional areas of these wind
ings. The results of these redistributions of current are an increase in the copper losses 
in the windings of the transformer and a reduction in the magnetic energy stored in the 
window of the transformer core. 

The increase in the copper losses in the transformer windings appears in a circuit 
as an increase in the resistance of each of the transformer windings. This increase in 
the apparent winding resistance is often referred to as ac winding resistance and is a 
deleterious effect that results in more power dissipation in a winding that carries a given 
current. The increased power dissipation translates into an increase in the heat generated 
in the winding space. This increased thermal stress can affect the performance of the 
transformer enough to outweigh other advantages of high-frequency operation; in fact, 
the thermal problems related to high-frequency winding losses can place an upper limit 
on the frequency that can be used in a given device. Since transformer performance is so 
heavily influenced by dissipative loss, the quantification of ac winding resistance effects 
has been the major focus of most of the recent work that has appeared concerning the 
high-frequency operation of transformers: 

The reduction of the amount of magnetic energy in the transformer window area that 
results from high-frequency excitation can be related to a corresponding decrease in the 
inductance of the various windings of the transformer. This winding inductance is often 
referred to as transformer ac leakage inductance. We must be clear however that the 
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concept of leakage inductance or more specifically leakage flux is defined only as leakage 
between two windings. There is no way to designate what the leakage inductance of a 
winding is in and of itself, but rather this must always be defined in reference to some 
other winding. In this report we refer to the inductances associated with the leakage flux 
between any two windings as the reactive component of the leakage impedance between 
the two windings. 

The reduction of magnetic energy in the transformer window area is a more benign 
and generally a more beneficial phenomenon than the corresponding increase in apparent 
winding resistance. It has not, therefore, received a great deal of attention in the liter
ature. However, this inductance of transformer windings warrants closer examination. 
At sufficiently high frequencies the winding inductance may interact with other stray 
elements in the circuit and significantly affect the circuit operation. In certain types of 
circuits such as quasi-resonant switching converters, this is a desirable and important 
interaction. 

In other applications, however, the inductances in the windings cause undesirable ef
fects. Such a situation exists in the multioutput voltage regulator where the inductances 
in the secondary windings of a multisecondary transformer create cross-regulation prob
lems that impact the steady-state output voltages that appear on unregulated outputs. 
The analysis presented in this report is aimed more toward quantifying these cross
regulation effects than toward describing the interaction between transformer winding 
inductances and other parasitic circuit parameters. The focus of this analysis influences 
many of the assumptions used in deriving a suitable model for multiwinding transformers 
with high-frequency current excitations. 

1.1 OVERVIEW OF THE REPORT 

This report is divided into two separate parts: Part I: Analysis, and Part II: Literature 
Review. The document you are reading currently is Part I: Analysis. Throughout the 
rest of this report Part I: Analysis is called "Part f' or "Part I of this report" and Part II: 
Literature Review is called "Part IP' or "Part .II of this report." Part I of this report 
deals primarily with deriving the field solution to determine the redistribution of currents 
in high-frequency transformer windings and how this redistribution affects the power 
dissipation and energy storage of the transformer windings. It is designed to aid the 
reader's understanding of high-frequency effects in transformer windings and to provide 
the reader with simple equivalent circuits for the transformer which account for these 
effects. Part II of this report is an in-depth review of several important articles pertaining 
to high-frequency transformer windings and describes the strengths, weaknesses and 
significant contributions of each article. It is designed to aid the reader's comprehension 
of the reviewed articles. 
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1.1.1 Overview of Part I of the Report 

Part I of this report provides a means by which the impedances which characterize a 
multiwinding transformer can be calculated for high-frequency sinusoidal excitations. 
The general aim of this analysis is to replace laboratory measurements of transformer 
characteristics with calculated values that are based on the geometry of the transformer 
and the excitation conditions in the transformer windings. The results of such an anal
ysis hopefully will provide the foundation for determining via computer simulation the 
interactions between the various windings of a multiwinding transformer. The ability 
to simulate the behavior of a given transformer design without actually building the 
device should prove useful in the design of multiwinding transformer circuits for use in 
high-frequency applications. 

Another and perhaps equally significant purpose of Part I of this report is to review 
critical concepts of high-frequency transformer analysis and to familiarize the reader 
with the set of assumptions that are used in such an analysis. This should provide the 
reader with the tools necessary to understand similar derivations presented in recently 
published articles such as [19]. In deriving the full solution for the field distribution 
in an infinite current sheet used to model a transformer winding layer, Part I of this 
report fills in many of the details that are often left out of shorter journal articles. 
The mathematical detail presented herein should allow the reader to follow the trail of 
analysis without having to derive the intermediate steps and should aid the reader's 
understanding of the journal articles discussed in Part II. Also, the sections on modeling 
an actual transformer winding structure should provide a guideline for applying these 
results to specific transformers. At the outset of the solution for the fields associated with 
the transformer winding space, certain assumptions are made and the winding layers of 
the physical transformer are replaced by infinite current sheets to make the solution 
tractable. At the conclusion of the field solution, two equivalent circuits are proposed to 
model the transformer's behavior in an electrical system. 

1.1.2 Goals and Assumptions of Part I 

Generally it is very difficult if not impossible to calculate the leakage impedance values 
between transformer windings, so the measurement of these parameters in the laboratory 
is usually the only reasonable alternative. This is rather inconvenient to the design 
engineer who would like to predict the performance of a certain transformer design 
without first building the device. In addition, the dependency of the leakage impedances 
of a transformer on the excitation conditions that exist in the windings means that it is 
usually not sufficient to measure the transformer characteristics only once; rather, the 
measurements must be performed over the expected range of harmonics for the excitation 
waveform. 

The goal of Part I of this report, therefore, is to develop appropriate methods for 
calculating the values of the various winding impedances of a multiwinding transformer 
based on the geometry of the winding structure and the winding excitation conditions. 



4 Duke University Section 1.1.2 

(a) (b) 

Figure 1.1: Definition of winding arrangements (a) square and (b) hexagonal 
[17, page 338J. 

To accomplish this goal, we must make several simplifying assumptions about the trans
former that allow us to analyze the magnetic field distribution in and around the windings 
of the transformer in a single dimension. The main assumption that we use to perform 
such a one-dimensional analysis-indeed it is with the purpose of allowing . this one as
sumption that other approximations are made-is that throughout the winding space 
of a pot- or EE-core transformer, the magnetic leakage flux is parallel to the surfaces 
of the various layers of conductors that comprise the transformer windings. We specify 
our assumptions and define the geometry of the winding structures in detail later in this 
report. We make no attempt in this report to address the variations of the magnetic 
fields in the windings in more than one dimension. 

In this report, we are interested only in the high-frequency behavior of the trans
former windings. No attempt is made to model core loss, nor analyze the frequency 
dependence of core loss. Rather, it is assumed that the magnetizing current of the 
transformer core is negligible and that the core appears to be ideal, i.e., it is lossless 
and stores no energy. Also, the analysis pres':!nted herein predicts only the apparent 
winding resistances and leakage inductances of the transformer windings. Throughout 
this analysis, capacitive effects caused by voltage gradients between adjacent conductors 
are ignored. For the frequencies of interest, this does not seriously affect the agreement 
between the measured transformer impedances and the predicted values as is shown in 
Chapter 6. At higher frequencies though, capacitance in the transform~r windings will 
cause the measured and predicted values to diverge. 

For the analysis presented in Part I of this report, certain assumptions are made 
about the configuration of the windings in the transformer window. It is assumed that 
winding layers are arranged in a "square" configuration as in Fig. l.l(a) rather than a 
"hexagonal" arrangement as in Fig. 1.l(b). Hence, turns from one layer are not permitted 
to sink into the spaces between the tun:1s of an adjacent layer. Likewise, it is assumed 
that transformer winding layers contain only conductors of one transformer winding. 
Bifilar windings, where wires from two separate windings are wound simultaneously, 
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are not considered. -However, no restriction is placed on the relationship between the 
conductors in adjacent layers, and conductors of the same winding may be paralleled 
and wound simultaneously. 

The analysis presented in this report is based solely on sinusoidal-current-excitation 
conditions in the windings of a transformer. Nonsinusoidal-current excitations can be ac
commodated by applying Fourier analysis to the nonsinusoidal waveforms. Such Fourier 
analysis is discussed in [2,19,20],1 but we do not examine it any further in Part I. From 
the purely sinusoidal analysis, we derive expressions for the resistance and inductance 
values between two windings and then use these results in two different equivalent-circuit 
models of a multiwinding transformer. These circuit models are intended to be used in 
a circuit simulation tool such as SPICE for predicting the behavior of a multiwinding 
transformer under load. We have not performed such simulations and we can make no 
claim about the. adequacy of the equivalent-circuit models discussed in this report. 

The assumptions used in the analytical development limit the applicability of the 
results. Although measurement verification for different transformers operated under 
various excitation conditions is not complete, the analysis should apply to transformers 
wound on pot- or EE-core structures. Of particular interest are multiwinding trans-

. formers for use in multioutput de-to-de converters with PWM control. It should be 
stressed that the fundamentals of the analysis techniques employed here can be found 
in many early references on transformer analysis; however, the particulars of the anal
ysis are adapted toward predicting and modeling the effects of high-frequency current 
excitations on the leakage impedances of multiple-winding transformers. 

We should remember that the analysis of transformers and the calculation of trans
former device characteristics is one of the oldest and most thoroughly investigated topics 
in electrical engineering. The reader should recognize that many of the ideas and solu
tions that are addressed in Part I were investigated in much earlier work. The primary 
advantage that the present analysis enjoys that earlier works could not incorporate is 
computer calculation of complex magnetic field equations. In essence, the major contri
bution of the following analysis is our ability to calculate and display the distributions of 
magnetic energy and current density inside a transformer winding space, thus increasing 
the reader's understanding of high-frequency effects in transformer windings. 

1.2 OUTLINE OF ANALYTICAL STEPS PRESENTED 
IN PART I 

In Chapter 2, we show how an actual transformer winding structure can be converted 
into the geometrical model of a transformer that we use in the analysis of Chapter 4. 
This chapter concentrates on the definition of certain winding parameters and provides 
detailed explanations for terms encountered in the rest of this report and in recently 

1 We list all references in Part I of this report alphabetically. See the bibliography for the specific 
reference. 
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published articles. In addition, Chapter 2 addresses the term leakage flux and what is 
meant by this term throughout this report. 

Chapter 3 sets up the problem we address in the analytical development of later 
chapters. In this chapter, we initially assume that we can model the transformer as a 
multilayer, infinitely long solenoid. We then describe the magnetic-field-intensity distri
bution that exists in a two-layer infinite solenoid when the currents in the windings are 
constant or varying at low-frequencies. Following the development of the low-frequency 
field distribution in the solenoid, we discuss the effect that time-varying magnetic fields 
have on conductors in general. This discussion provides detailed qualitative explanations 
of both the skin and proximity effects that occur in the conductors of the transformer 
windings. Following this general discussion of the eddy-current effects in conductors, we 
introduce the infinite current sheet as an approximate representation of the infinitely 
long cylindrical conducting layers of the infinite solenoid. We conclude Chapter 3 by 
setting up the geometry of the current sheet which we proceed to analyze in Chapter 4. 

Chapter 4 presents the bulk of the mathematical work in this report. In this chapter, 
we begin with Maxwell's field equations and apply them to the infinite current sheet 
under sinusoidal field variations. From these equations, we derive one-dimensional dif
ferential equations for the magnetic field intensity and current density inside a current 
sheet. We then solve these differential field equations to determine expressions for the 
distribution of magnetic field intensity and current density as functions of excitation 
frequency and the values of the magnetic field intensity on the boundaries of the sheet. 
An extensive number of plots are presented in this chapter to illustrate the impact of 
the skin and proximity effects on the distribution of the magnetic field intensity and 
current density in the conducting layers. The remainder of Chapter 4 shows how these 
two field distributions are used to calculate the power dissipated and energy stored in 
any winding layer. 

Chapter 5 takes the general expressions for the power dissipated and energy stored 
in any winding layer, developed in Chapter 4, and applies them to the calculation of the 
apparent resistance and inductance for transformer windings under specific hypothetical 
short-circuit tests. The low-frequency field-intensity diagrams developed in Chapter 3 
are used to determine the boundary conditions of field intensity for each layer in the 
winding space. The boundary conditions are used with the layer-based expressions of 
Chapter 4 to determine the total dissipated power and . energy stored in the winding 
space. Finally, the total power loss and energy stored are represented in an equivalent 
circuit by a resistor and an inductor, respectively. 

An example calculation of the short-circuit resistance and inductance for an actual 
transformer at a specific frequency is presented in Chapter 6. This chapter takes the 
reader through the steps necessary to determine these values given the geometry of the 
transformer winding and the specific short-circuit excitation. Many of the more impor
tant concepts of the previous chapters are recapitulated in Chapter 6 and clarified by 
use. Calculated short-circuit resistance and inductance data are plotted versus frequency 
and compared with measured data to demonstrate the validity of the analytic results. 

- - ---- - -
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Two equivalent circuits which fully characterize a four-winding transformer_ for sinu
soidal excitation at a specific frequency are the subjects of Chapters 7 and 8. The ele
ments of these equivalent circuits are determined using the short-circuit impedances cal
culated using the expressions derived in Chapter 5. Chapter 7 focuses on the admittance
link model which is also discussed in [1,13,18]. At the beginning of Chapter 7, we 
review the general K-port-network description of a transformer with K windings and 
express the winding voltages and currents using port voltages and currents of the K
port network. This K-port network · description is used to derive expressions for the 
admittance-link-circuit elements in terms of the transformer short-circuit impedances. 
Chapter 7 concludes with a sample calculation of the admittance links for the example 
transformer used in Chapter 6. Chapter 8 focuses on a coupled-secondaries equivalent 
circuit which is an extension of a model proposed by Rosa in [15]. The relationship 
between the adm,ittance-link model and the coupled-secondaries model and the relative 
merits of each are also discussed in Chapter 8. 

Finally, Chapter 9 reviews some of the major assumptions made in this analysis, and 
provides some general guidelines for reducing the leakage impedances of multiwinding 
transformers. In this chapter we also comment on the future prospects for the application 
of the type of analysis presented here. 

The analysis methods presented in this report have been summarized in two papers 
which are to be presented at the 1989 Power Electronics Specialists Conference. Preprints 
of these papers are included in this report as Appendices J and K. 

1.3 NOTATIONAL CONVENTIONS USED IN THE 
REPORT 

While writing Parts I and II of this report, a consistent set of symbols and nomen
clature was adopted by the authors. A summary of these symbols and their definitions 
appears in the Glossary of Symbols which is located immediately after the Table of 
Contents. Throughout this report, all quantities are presented in SI units. The adopted 
nomenclature is defined throughout the text of Part I but primarily in Chapter 2. To cue 
the reader on the specific usage of the adopted symbols, certain notational conventions 
are used throughout Parts I and II of this report. 

Variables that represent time-varying density functions are given lower case symbols, 
as shown below. The corresponding total time-varying variables resulting from integrat
ing these density functions over space are given upper case symbols. For these variables, 
the case of the subscript follows no convention and is defined upon the first use of the 
variable. The time-varying nature of these functions is emphasized by the presence of 
(t) in the variable. Examples are: 

• Pd(t): instantaneous power dissipated per unit volume (power density) 

• wm(t): instantaneous magnetic energy stored per unit volume (energy density) 

• Pn(t): total instantaneous power in the nth layer of a transformer 
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• W9 (t): total time-varying energy stored in the interlayer gaps 

The time average value of any of these variables is represented by enclosing the symbol 
in angle brackets ( } . An example of this is (pd}, the time-average power density at a 
point. 

With the above density functions as an exception, a time-varying quantity is generally 
designated as a lower-case variable with an upper-case subscript, and the corresponding 
time-average variable is given in angle brackets. For example, isc or isc(t) might repre
sent the instantaneous current under short-circuit (SC) conditions, and (isc} represent 
the time-average short-circuit current. Variables that refer to rms values of currents or 
voltages are written in upper case with an upper-case subscript. For example, an rms 
current in a short-circuited transformer winding is designated Isc-

In the special case of sinusoidally varying waveforms, time-varying quantities may 
alternatively be written using phasor notation. Phasor notation is a shorthand notation 
used to represent the magnitude and phase information of a sinusoidally varying quantity. 
A phasor is a complex number with a magnitude equal to either the peak value or therms 
value of a sinusoidal waveform and a phase angle that corresponds to the difference in 
phase between the particular time-varying quantity and some chosen sinusoidal reference. 
In this text, we choose the magnitude of a phasor quantity to be equal to therms value 
of the sinusoidally varying quantity that it represents. We designate phasor quantities 
as upper-case letters with an underline. For example, the symbol l.sc denotes the 
phasor for the sinusoidally varying short-circuit current isc(t). A phasor can be written 
as a complex number in terms of its real and imaginary components, or in terms of its 
magnitude and phase angle. In the latter case, called the polar form, two conventions are 
commonly encountered-either l.sc = IscL0 or Isc = Isc ei11-where the magnitude of 
the phasor, which in this report is equal to therms value Isc of the sinusoid, is followed 
either by the angle symbol L and the phase angle 0 or by the expression ei11 • Phasor 
quantities are converted from polar to rectangular form using the Euler identity 

ei11 = cos0 + jsin0 (1.1) 

Phasor quantities are transformed into their corresponding time functions by multiply
ing the phasor by the time function eiwt, then taking the real part (for the case of a 
cosinusoidal reference function) and multiplying the result by Ji Tha~ is, 

isc(t) v'2 Re(lsc eiwt) 

v'2 Re(Isc eili eiwt) 

v'2 Isc cos( wt + 0) (1.2) 

In addition to being used in the symbols for phasor quantities, underlines are used to 
denote all complex variables. This includes any complex numbers that are the ratio of 
phasor quantities which are written as upper case letters with an underline. An example 
of this is an impedance that is determined from the ratio of a phasor voltage V and a 
phasor current L For this case, we write Z = V / L 
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Another notational convention in this report is the use of boldface characters to des
ignate vector quantities. An example of this is E(x, y, z, t) which is the three-dimensional 
time-varying vector electric field. If this electric field is varying sinusoidally in time, then 
we can combine the phasor and vector notations and write 

E(x,y,z,t) = V2Re(E(x,y,z)eiwt) (1.3) 

where E(x, y, z) is a vector phasor quantity. This vector phasor can be written in terms 
of its phasor components as 

(1.4) 

where Ez can be expressed as EzLOz or Ezej/J,. and can be a function of x, y and z. In the 
text of this report, the explicit argument dependence of a vector quantity is sometimes 
dropped if the vector nature of the quantity is clear. For example, in writing Maxwell's 
equations, we may write V x E = -aB/at where the spatial and time dependencies of 
E and B are understood. 

Finally, an expression that represents a normalized value is written with an additional 
N subscript appended, if necessary, by a hyphen to any preexisting subscript. For 
example, the magnetic field intensity in the nth layer Hz)x) can be normalized to some 
base value HBASE, to yield the normalized field intensity for the layer Hzn-N(x) = 
Hzn (x)/ HBASE· 
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Chapter 2 

Deriving a Model Transformer 
Structu.re From An Actual 
Transformer Winding 
Arra~gement 

Any analysis of high-frequency effects in transformer windings must, of course, begin with 
a determination of the fields in and around the windings which is based upon Maxwell's 
equations. Before this can be done though, certain assumptions must be made so that the 
transformer windings can be modeled and the field solution made tractable. Also, a set 
of terminology must be adopted to facilitate discussion of the transformer windings and 
any resultant model. In this chapter, we demonstrate the techniques and terminology 
used to transform an actual winding structure that consists of round wire, rectangular 
conductors, or foil windings into a model structure which we use in subsequent chapters 
that contains only equivalent foil conductors which extend across the full breadth of the 
core window. We also examine two aspects of leakage flux and clarify what is meant by 
this term in subsequent chapters. 

2.1 EXAMPLE WINDING STRUCTURES 

The key to the transformer analysis presented in this report lies in the geometry and 
layout of the transformer winding structure. Therefore, it is important to state clearly 
what types of devices are addressed here and to define clearly a set of variables that can 
be used in the analytical expressions. Much of the published work that addresses the 
issue of ac winding impedances uses somewhat conflicting terminology when referring 
to both transformer geometry and winding parameters. In the following discussion, we 
choose a single set of definitions and conventions to refer to the magnetic structures. 
Some terms are taken directly from the literature where a relatively clear consensus 

11 
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Figure 2.1: Wound EE-core transformer with shell windings. 

exists among several authors. Where no such clear agreement exists, we pick a suitable 
symbol and use this symbol throughout our discussion. Not all of the symbols that 
we define in this chapter are necessarily used in any calculations given in this report. 
The justification for providing the specific and detailed definitions for all geometrical 
quantities is that such definitions should prove useful in the future for such pursuits 
as developing any type of computer program for the analysis of devices such as those 
examined in this report. For ease of reference, the symbols defined within this chapter 
and in later parts of this report have been collected in the Glossary of Symbols which 
follows the Table of Contents. 

2.1.1 Transformer Configuration of Interest 

The focus of our analysis is transformers with windings that are wound on pot cores 
although it is our opinion that the analysis is equally valid for EE cores such as those 
shown in Fig. 2.1. A transformer of the type shown ·in Fig. 2.1 has windings which 
form concentric cylindrical "shells" with the outer layers of wire completely surrounding 
the inner winding layers. Such a structure is referred to as a shell transformer in [13], 
and we shall use that designation in the discussion which follows. In a shell winding 
arrangement, the flux in the window of the transformer is assumed to be parallel to the 
axis of the winding. This leakage flux pattern is shown for an example transformer in 
Fig. 2.2. 
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Main flux 

Leakage flux 

Figure 2.2: Window flux pattern in a shell winding structure. 

2.1.2 Dimension Directions 

The coil dimensions shown for the winding structure of Fig. 2.1 employ the following 
conventions: 

• The breadth direction is in the same direction as the flux in the transformer 
window. For a shell winding structure, this direction is parallel to the axis of 
the center leg of the core. This is later referred to as the z-axis direction. This 
convention is indicated in Fig. 2.1. 

• The height direction is normal to the direction of the flux in the window of the 
transformer and in the direction of the buildup of the windings. For the shell 
windings in Fig. 2.1, the height direction is normal to the core center leg. The 
height direction is later referred to as the x-axis direction. Figure 2.1 shows the 
height direction definition for the structure. 

• The depth direction is always normal to the plane of the core window and is later 
referred to as the y-axis direction. 

Figure 2.3 shows the cross section of the core and windings of a shell winding structure 
in greater detail. In this figure, there are three different types of windings illustrated. The 
innermost winding is made up of insulated round wire as shown in the upper detailed view 
of the winding. The center winding consists of insulated rectangular wire or insulated 
"strip conductor" as shown in the left-side detailed view; and the outermost winding is 
made of foil. The following definitions and features of this figure are of importance and 
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Figure 2.3: Detailed view of the cross-section ·of an EE-core transformer with 
shell windings. The innermost winding is made up of insulated round wire 
as shown in the upper detailed view of the winding. The center winding 
consists of insulated rectangular wire as shown in the left-side detailed view; 
and the outermost winding is made of foil. 
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should be clearly understood before proceeding to model the transformer for analysis 
purposes. 

2.1.3 Definition of Winding Geometry Terms 

Winding layer: A conductor or set of conductors that occupy the same window-height 
position is called a winding layer. This could also be stated as any set of conductors 
that are collinear in the direction of breadth. 

Multi-conductor winding: Any winding that is wound so that more than one sepa
rately insulated but electrically paralleled conductor occupies the same window
height position is said to be a multiple-conductor winding. If the middle winding of 
the windi~g structure shown in Fig. 2.3, for example, were fabricated as a four-turn 
winding where two side-by-side conductors at the same window height were con
nected electrically in parallel, then this would be a two-conductor winding. This 
situation is indicated by the arrows in the left-side detailed view. The arrows point 
to electrically paralleled conductors. The term multi-conductor winding does not 
refer to Litz wire windings or to twisted-strand windings which are not considered 
in Part I of this report; these types of windings are discussed briefly in [2,11,12,20]. 

The following symbols are defined with respect to the dra~ing of Fig. 2.3: 

bwin = the breadth of the core window itself. 

bmaz = the maximum breadth available in which to place a winding. This dimension is 
limited by a bobbin or a winding former or by the core itself. In the latter case, 
bmaz = bwin • 

bw = the breadth of a winding layer. This is the actual physical extent of a winding 
layer including the insulation on the conductors. It cannot exceed the maximum 
available winding breadth bmaz as shown in Fig. 2.3. 

bcu = the breadth of each of the copper conductors in a winding layer. For a foil 
conductor such as used in the outermost winding in Fig. 2.3 or a rectangular 
conductor such as used in the center winding, bcu is simply the breadth of the 
conductive material in the foil or the rectangular wire. This does not include any 
insulation on the conductor. For round conductors, bcu is computed by considering 
each round wire in the winding layer to be equivalent to a square conductor of 
equal cross-sectional area as discussed in detail later in connection with Fig. 2.5. 

hcu = The height of copper in a winding layer. For a foil conductor such as used in 
the outermost winding in Fig. 2.3 or a rectangular conductor such as used in 
the center winding, hcu is the height of the conductive material in the foil or the 
rectangular wire. This does not include any insulation on the conductor. For round 
conductors, hcu is computed by considering each round wire in the winding layer 
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to be equivalent to a square conductor of equal cross-sectional area as discussed in 
· detail later in connection with Fig. 2.5. 

d0 - the outside diameter of a round wire. This includes wire insulation. · 

dcu = the diameter of the copper alone in a round wire. 

i.T the length-of-turn of the layer. Often called the mean length-of-turn because it 
is calculated using the center of the layer in the x-direction, this value depends 
upon the actual shape of the windings of any particular transformer. Also, it is 
often assumed that the length-of-turn for each layer can be approximated by the 
length-of-turn for an entire winding or for an entire winding structure. 

Nt = the number of turns of winding wire in a winding layer. For a foil conductor 
winding, Nt = 1. For other winding types, Nt is always the number of turns of the 
winding that have the same height coordinate. 

Ne = the number of current-carrying conductors in a winding layer. The number of 
conductors in a layer may be the same as, or an integer multiple of the number of 
turns in a layer Nt. 

n 8 = the number of electrically paralleled conductors in a multi-conductor winding.1 

In the cross-section shown in Fig. 2.3, the rectangular-conductor winding has two 
conductors per turn (i.e., n 8 = 2). This is indicated by the connected arrows that 
point to the electrically paralleled conductors in the detailed view of the winding 
at the left of the figure. In terms of the above definitions, we can write Ne = n 8 Nt. 
We assume throughout Part I of this report that the n 8 electrically paralleled 
conductors each carry the same amount of current, i.e., they share the winding 
current equally. 

There are other features of the windings yet to be defined, but for this we need 
another figure. Figure 2.4 shows a shell winding transformer with three windings. One 
winding is of foil conductors and consists of the inner three layers plus the sixth layer. 
A second winding consists of two layers of round wires, layers number four and five; and 
a third winding consists of the outermost layer of round wire. From F'ig. 2.4, we can 
define the concepts of winding section, build, layer spacing, and section spacing. 

Winding section: A winding section is any set of layers of a particular winding that 
are located next to each other with no layers of other windings separating them. If 
all the layers of a winding are physically next to each other then there is only one 
winding section for that winding. In Fig. 2.4 we see that the winding composed of 
foil layers has two winding sections, whereas each of the round-wire windings has 
only one section. The maximum number of winding sections a winding can have 
is equal to the number of layers in the winding. 

1Multi-conductor windings are defined on page 15. 
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Figure 2.4: Detailed view of section and layer spa~ing in a three winding 
EE-core transformer with shell windings. One winding is of foil conductors 
and consists of the innermost three layers plus the sixth layer. A second 
winding consists of the fourth and fifth layers of round wire; a third winding 
consists of the outermost layer of round wire. 
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Build: The build of a winding is simply the total height-wire height plus wire insula
tion height-of all the layers of the winding. The sum of the builds of the different 
windings is limited by the core window height minus any allowance for a bobbin, 
insulating tape between layers or windings, shields, etc. The build of the foil wind
ing in Fig. 2.4 is four times the total height of the individual foil layers including 
insulation. 

s,_ = the center-to-center distance between two adjacent layers of the same winding 
section. 

S8 the center-to-center distance between two adjacent sections of the same winding. 

SP.a = the center-to-center spacing between adjacent layers of different winding sections. 

2.2 GEOMETRICAL WINDING STRUCTURES 

The figures in the previous section illustrate the actual winding structures for a variety 
of shell windings made of differing conductor types including round wire, rectangular 
and foil conductors. For the purpose of analysis, we would like to treat each of these 
winding types as though they are made up of foil windings that extend across the entire 
breadth of the core window. This approximation allows us to relate the actual winding 
structure to the model transformer structure we employ in Section 3.1. 

2.2.1 Converting Real Windings to Model Windings 

2.2.1.1 Round Wires Modeled as Foils 

One key to the process of converting the actual winding types into their model wind
ing equivalents is the method by which round wire windings are transformed into foil 
windings._ The assumptions in this process were introduced in [6] and have been used ex
tensively in other works [11,12,17,19,20]. The steps involved in going from a round-wire 
winding to an equivalent foil winding are shown in Fig. 2.5. 

In the modeling process, the round wires are first replaced by square_ conductors of 
equal copper cross-sectional area. These square conductors are · then brought together 
to form an equivalent foil winding with a height2 equal to that of the square-wire height 
and a breadth equal to the number of conductors in the layer times the breadth of 
the equivalent square conductors. This foil winding, which does not extend the entire 
breadth of the core window, is then in effect "stretched" in the breadth direction and 
is replaced by a foil of equal height that does extend across the entire window breadth. 
This stretching increases the total area of the foil layer which must be compensated for 
in some fashion in the analysis process. This is discussed further below. 

2 Remember that winding height is defined in the direction of winding buildup. 



Section 2.2.1 Modeling Multiwinding Transformers 

Figure 2.5: Steps in transforming a layer of a round-wire winding into a foil 
layer [19]. 

2.2.1.2 Rectangular and Foil Winding Models 
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A similar modeling process is involved in changing rectangular-conductor windings into 
foil windings. In this case, the only steps that are . required are first to replace the 
rectangular conductors that make up a layer of the winding by a foil layer of equal 
height with a cross-sectional area equal to the number of rectangular conductors times 
the area of each conductor, and then secondly to stretch this foil so that it extends across 
the entire window breadth. The height of the "stretched" foil of copper conductor is the 
same as the height of the rectangular conductors. 

Finally, all of the copper foil windings in the actual transformer are represented in 
the model transformer by foils of equal height which extend the entire window breadth. 
In the case of foil windings, the "stretching" step of the modeling process is all that is 
needed to go from the real winding to the model winding. 

2.2.1.3 Layer Porosity 

In the last step of transforming the actual winding structures in a transformer to foil 
windings (that is, when we ''stretch" the equivalent foil winding so that it crosses the 
entire window breadth), we are in effect increasing the cross-sectional area of each of the 
layers in the winding. In order for this transformation to be valid, there must be some 
compensating factor introduced which will insure that the de resistance of the model 
winding is the same as the de resistance of the original winding that it replaces. 

Since, for any conductor with a given conductivity u, copper cross-sectional area Acu 
and length l the resistance R is given as 

R=-l
uAcu 

(2.1) 
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Figure 2.6: Modeling a real winding structure as a set of stretched foil 
windings that extend across the entire core-window breadth. 

we can compensate for the increase in cross-sectional area by dividing this relationship by 
a factor .which will offset the increase. That is, since resistance is inversely proportional to 
both conductivity and cross-sectional area, we can offset an increase in area by decreasing 
the conductivity by a corresponding amount. This multiplicative factor is called the layer 
porosity r,. The layer porosity is simply the percentage of the total core-window breadth 
bwin that is occupied by conductive material in any winding layer. The value of r, is 
always positive and less than unity. Using this compensating factor we can rewrite (2.1) 
as 

R = _f._ 
r,uA 

(2.2) 

where A is the effective cross sectional area of the stretched foil. A general value of 
conductivity u is used in the fields analysis of Chapter 4, but the significant resultant 
equations are recast in terms of the effective conductivity O"eJJ = r,u in Section 4.6. 

The transformers shown in Fig. 2.6 illustrate how a practical winding structure that 
contains different kinds of windings is modeled by a transformer .with porous-foil wind
ings stretched across the full breadth or' the core window. Figure 2. 7 shows this type 
of geometric model in greater detail for a three-winding seven-layer transformer. The 
parameters shown in the geometric model of the transformer in Fig. 2. 7 are defined as 
follows: 

hcu = height of a winding layer modeled as a foil winding. For rectangular and foil 
windings this is exactly the same as the height of the conductive material in the . 
conductor. In round-wire windings, this is the height of the equal-area square 
conductors. For a round conductor with a diameter of copper dcu this height is 



Section 2.2.1 Modeling Multiwinding Transformers 21 

lntrasection gaps ( g lntras) 
Intersection gaps ( g inters) 

~ Winding 1 
[j Winding 2 
IZJ Winding 3 

G) (g)@ : Height of copper, h cu , 
in windings 1, 2 and 
3, respectively. 

@ @ © : Examples of inter-, , 
layer gaps. (g) 

b . 
Win 

Figure 2.7: Detailed view of the structure of a transformer modeled as a set 
o_f foil windings that extend across the entire core-window breadth. 
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given by 

{2.3) 

9intra.a = intrasection layer gap. This is the distance between adjacent layers of a winding 
section after the transformer has been modeled as a set of foil windings. 

9intera = intersection gap. This is the amount of space there is between any two adjacent 
winding sections in the model transformer. 

g = interlayer gap. This is the distance between any two adjacent layers in the model 
transformer regardless of whether they are in the same section. 

TJ = layer porosity. As defined in the text above, this is the ratio of the breadth of 
the conductive material in a winding layer to the breadth of the core window bwin· 

For a winding layer with Ne current-carrying conductors each of a height hcu and 
a breadth bcu, the porosity TJ is given by 

{2.4) 

The intersection gap 9intera and intrasection gap 9intra.a are both examples of interlayer 
gaps, i.e., gaps between two layers. The term interlayer gap describes the gap between 
two layers whether they are members of the same or different winding section{s). 

Note that when transforming an actual winding into a foil equivalent, it is the layer 
and section center-to-center spacings in the direction of winding buildup which are held 
constant. For a round-wire winding, the height hcu is different from the cond~ctor 
diameter dcu and the outer diameter d0 of the wire. For all types of windings, there is 
a "stretching" process which changes the breadth of the winding layer. However, in all 
cases the center-to-center spacing between layers St. in a winding section, the center-to
center distance S8 between winding sections and the center-to-center spacing S1.8 between 
layers of different sections are all retained. 

2.2.2 Admonitions Concerning the Use of Layer Porosity Tl 

Although the concept of layer porosity3 is generally accepted in the reviewed literature 
[6,11,12,20], the reader should be warned that the indiscriminate use of layer porosity 
can lead to erroneous results. The analyses performed here and in [6] are "reliable" 
only for values of TJ which are not "too small" [17, pages 322,323]. A cornerstone of 
the analysis presented in Chapters 3, 4 and 5 is that the flux in the core window is 
parallel to the winding layers across the entire breadth of the core window as shown 
in Fig. 2.2. When discrete conductors constitute the winding layers, the validity of the 
assumption of parallel flux depends largely on the value of T/· When conductors in a layer 

3 Layer porosity is also referred to as layer space factor and horizontal porosity in the literature 
reviewed in Part II. 
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(a) t t (b) 

Figure 2.8: Example of conductor layers where '7 may be too small. In (a) 
the conductors are spaced throughout the breadth of the window but have 
significant distances between them. In (b) the conductors are contiguous 
but there is significant distance between the transformer-core yolk and the 
layer of conductors. 
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are spread throughout the window breadth and have significant distances between the 
conductors, as in Fig. 2.8{ a), or if all the conductors in the layer are bunched together 
with significant distance between the ends of the layer and either the upper or lower yoke 
of the transformer core, as in Fig. 2.8(b), considerable bending of the flux lines occurs. 
Hence, small values of '7 negate one of the fundamental assumptions of Chapter 3 and 
call into question the validity of the analysis presented in Chapters 3, 4 and 5. When 
round-wire conductors are modeled as foil conductors, the maximum possible value of 
layer porosity is '7 = 0.89, which occurs only when the wires are contiguous, entirely fill 
the core-window breadth bwin and have negligible insulation. 

2.3 DIFFERENT COMPONENTS OF LEAKAGE FLUX 

Throughout Parts I and II of this report, we discuss the effects of leakage flux on trans
former windings and how to predict these effects. The use of the term leakage flux may 
lead to some confusion since leakage flux in transformers can be considered to be made 
up of two components, only one of which is covered in this report and in the literature 
reviewed in Part II. In a transformer, leakage flux arises because of the following: 

1. The effective permeability of the transformer core is low, i.e., not much greater than 
that of free space (µ ":$> µo). This occurs when a core has substantial intentional or 
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unintentional air gaps, or when the core material has a low intrinsic permeability 
as do some ferrites. 

2. The winding height hcu of the transformer windings and the heights of the interlayer 
gaps between windings and within each winding are of nonzero value. 

Since core materials with infinite permeability and winding layers of zero height do not 
exist in nature, both of these components of leakage flux occur, to some degree, in 
any physical transformer; however, often one or the other component can be considered 
negligible depending upon the transformer design and application. 

Figure 2.9(a) shows the right half of a transformer where the permeability µ of the 
core is low and the winding and interlayer-gap heights are nonzero, so both components 
of leakage flux are present in the winding space. To examine the two separate causes 
of leakage flux, we modify Fig. 2.9(a) appropriately to produce Fig. 2.9(b) and (d). In 
Fig. 2.9(b), we examine the condition in item 1 and retain the same permeability for 
the core material as in (a), but shrink the winding heights so that hcu = 0 for both 
primary and secondary. In Fig. 2.9(d), we examine the condition in item 2 and retain 
the same winding heights as in (a) but assume an ideal core material with µ = oo and 
zero coercive force. 

If we examine Fig. 2.9(b) more carefully, we note the points A and E located in the 
top and bottom core yolks, respectively, points B and D located in the inner and outer 
legs of the core, respectively, and point C .in the center of the interlayer gap. Magnetic 
flux <p which flows through the center leg of the transformer-path (EBA)-can flow 
both through path (ADE) in the outer leg of the core and through path (ACE), the air 
in the transformer window. The amount of flux which flows in each path is dependent 
upon the relative reluctance values of paths (ADE) and {ACE). 

Viewing the transformer as a lumped magnetic circuit as is shown in Fig. 2.9(c), we 
note that the reluctance R of a magnetic flux path is 

(2.5) 

where £ is the magnetic path length and A is the cross-sectional area of the magnetic 
path. In addition, we can describe the magnetic circuit in terms .of its magnetomotive 
force 1, the flux in the center leg of the core 'P(EBA), and R(EBA), R(ACE) and R(ADE) 

the reluctances of the various· flux paths marked in Fig. 2.9(b). Viewing flux as the 
analog of current, mmf as the analog of voltage, reluctance as the analog of resistance 
and assuming that the inner winding is excited and the outer winding is open-circuited, 
the flux 'P(EBA) encounters the reluctance R(EBA) in series with the parallel paths R(ACE) 

and R(ADE)· Thus, we can write the magnetic analog of Ohm's law for the transformer. 

(2.6) 
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Figure 2.9: Leakage flux in a transformer is due to µ =/= oo and hcu =/= 0. 
Part (a) shows such a transformer. In (b), hcu = 0 but µ "'.$> µo and the • 
reluctance of flux path {ACE) is on the same order of magnitude as that of 
path (ADE). (c) shows the magnetic equivalent circuit for the core of (b) 
when the inner winding is excited. In (d), hcu =/= 0 and µ = oo; leakage flux 
is due to the variation of mmf shown in ( e). 
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Likewise, we can view the reluctances of paths (ACE) and (ADE) as a flux-divider 
network which allows, us to write the fluxes associated with those paths in terms of 

<f>(EBA) 

R(ADE) 
<l>(ACE) = <l>(EBA) R R 

(ACE)+ (ADE) 
(2.7) 

R(ACE) 
<l>(AD E) = <l>(EB A) R R 

(ACE)+ (ADE) 
(2.8) 

Examining (2.5), (2.7), and (2.8) we see that if the effective permeability of the magnetic 
core is sufficiently low, R(ACE) and R(ADE) may be on the same order in which case 
<l>(EBA) will split more or less evenly between them. 

Although the outer winding in Fig. 2.9(c) conducts no current, the voltage which 
appears across its terminals is determined by Faraday's law, 112 = N2 B</>2/Bt where </>2 
is the flux linked by the N2 turns of the outer winding. From Fig. 2.9, we see that the 
flux which links the outer winding is not equal to that which links the inner winding, 
<f>(EBA), by the amount of flux "leaking" through the window, <l>(ACE)· In other words, 
</>2 = <l>(EBA) - <l>(ACE)· If the effective permeability of the transformer core increases, 
R(ADE) and <l>(ACE) decrease, and </>2 = <l>(ADE) increases toward <l>(EBA), the flux linked 
by the inner winding. 

The flux following path (ACE) in Fig. 2.9(b) is leakage flux which is caused by 
an imperfect core material. This is the type of leakage flux commonly discussed with 
reference to gapped transformers and other low-permeability energy-storage cores. This 
type of leakage flux is not the subject of the present report and is not discussed further 
in this document or in any of the papers review in Part II of this report. 

As is stated above, when the permeability of the transformer core increases, more 
of the flux <f>(EBA) in Fig. 2.9(b) continues along the path (ADE), since the reluctance 
of path (ADE) decreases. However, it would be incorrect to take the limit of (2.7) 
and (2.8) as permeability approaches infinity and use these limits and Fig. 2.9(c) to 
assume that a perfect core material means that there is perfect coupling between the 
windings of a general two-winding transformer. In Fig. 2.9(b) and (c) only one winding 
current is permitted to flow so that we can decouple the two components of leakage flux. 
In a general two-winding transformer where both windings are ,conducting, there is a 
component of leakage flux which occurs even if the core material is perfect. 

To illustrate this second source of leakage flux, we present Fig. 2.9(d). Here µ = oo, 
N1I1 = N2h, and the transformer windings are represented as having nonzero height 
hcu• Figure 2.9(e) shows, as a function of distance x along the core's window, the mmf 
of the transformer for the condition shown in Fig. 2.9(d). We see that as distance 
increases, the number of ampere-turns increases as the inner winding is traversed. In 
the interlayer gap, the magnetomotive force 1 remains constant and then decreases as 
the outer winding is traversed. Field-intensity or mmf diagrams such as that shown in 
Fig. 2.9(e) are discussed in detail in Section 3.1.2, but for now it is sufficient to note 
that since flux is proportional to mmf, the leakage flux in the winding space varies with 
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di~tance in the same fashion as does 1 in Fig. 2.9(e), and is due to the current in the 
windings and the nonzero heights of the windings and interlayer gaps. If the winding 
heights in Fig. 2.9(d) were reduced to zero and the windings placed infinitesimally close 
together, then no flux would appear in the core window since both components are equal 
to zero. However, just the opposite is true for the transformer pictured in Fig. 2.9(a), 
where both components of leakage flux exist. Throughout the analysis presented in 
Part I we assume that the core material has such a high permeability that the leakage 
flux due to the nonzero heights of the winding layers and interlayer gaps is dominant. 
Therefore, we are interested only in leakage flux in the core window which is caused by 
the variation of 1 with distance. This type of leakage flux is also the focus of the papers 
reviewed in Part II. 
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Chapter 3 

Magnetic-Field Distribution 
in the -Winding Space 
of a Transformer 

The leakage impedance between each pair of windings is important information for mod
eling high-frequency effects in a transformer. The resistive part of the leakage impedance 
arises from the resistivity of the conducting material and the uneven distribution of cur
rent in the conductors at high frequency. The inductive part exists because part of 
the magnetic flux generated by a current in any one winding fails to link with all the 
turns of both windings. In the following discussion, the infinite-solenoid model is intro
duced as a way of representing the essential structure of a multiwinding transformer. 
Because the magnetic-field distribution in such a solenoid is similar to that in a shell
winding transformer wound on a relatively high-permeability core, an understanding 
of the leakage-flux pattern in an actual transformer may be gained by examining the 
leakage flux in a multilayer infinite solenoid. 

It is shown in Chapter 5 how the two components of leakage impedance, ac winding 
resistance and leakage inductance, are calculated from the power dissipated and the 
magnetic energy stored in the windings of a transformer. In Section 4.5, equations 
are derived by which values for power dissipation and energy storage can be calculated 
from the spatial distribution of magnetic field intensity in the volume occupied by the 
transformer windings. That magnetic-field-intensity distribution is derived for the air
and-insulation spaces between winding layers in this chapter, and for the interior of each 
winding layer in Chapter 4. Also in this chapter, the basic principles that govern the 
behavior of the magnetic field in the transformer winding space are explained. 

In Section 3.1 below, it is shown how a hypothetical infinite solenoid carrying de 
current is used to predict the frequency-independent magnetic-field distribution between 
the winding layers of a real transformer. That distribution depends only on the net 
current flowing in each winding, not how the current is distributed within each winding 
layer. Section 3.2 contains a qualitative discussion of eddy-current effects, which cause a 
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frequency-dependent redistribution of magnetic field intensity and current density inside 
each winding layer. Finally, Section 3.3 shows how an infinite current sheet is used 
to model each winding layer to solve for the magnetic-field-intensity distribution inside 
each layer as a function of frequency. The magnetic-field-intensity distribution and the 
associated current-density distribution in an infinite current sheet are derived in the next 
chapter. Here and throughout Part I of the report, all time-varying currents and fields 
are assumed to be sinusoidal. 

3.1 INFINITE-SOLENOID MODEL OF A 
TRANSFORMER 

To simplify the problem of calculating the fields present in the winding space of a real 
transformer, it is shown in Section 2.2.1 how actual winding layers are modeled as foil 
layers that extend the entire breadth of the core window. Here, it is asserted that the 
leakage-flux pattern in and between those model winding layers, when surrounded by a 
pot core of infi.nite permeability, is exactly the same as the flux pattern present in a slice 
of a hypothetical infinite solenoid. An infi.nite solenoid is defined as a tightly wound torus 
with a finite circular cross section and a ring radius that approaches infinity, illustrated 
in Fig. 3.1. A loosely wound torus is shown instead in the figure to avoid obscuring the 
flux lines, which never leave the inside of the torus. 

The magnetic flux in the infinitely long solenoid of Fig. 3.l(c) is said to follow a return 
path "at infinity." If a finite section of such a single-layer infinite solenoid is enclosed 
in infinitely permeable magnetic material as shown in Fig. 3.2, the leakage flux in the 
winding space is unchanged. The reason is that the axially directed flux of the infinite 
solenoid already satisfies the boundary condition required by Maxwell's equations, that 
is, the flux must be perpendicular to the surface of the ideal magnetic material where it 
enters the material. Essentially, the ideal magnetic material provides a return path for 
the flux that is equivalent to the path "at infinity" in Fig. 3.l(c). 

With a magnetic yoke of less than infinite permeability, the leakage-flux pattern is 
close to that in an infinite solenoid as long as the component of the primary current that 
excites the core is small with respect to the component that supplies the loads. This 
condition is used as the definition of "high" permeability. 

The structure of the model pot-core transformer in Fig. 3.3(b) is basically the same 
as that of Fig. 3.2. The only differences are multiple conducting layers, addressed in 
Section 3.1.2.2 below, and a center leg of the core. Although adding the center leg 
substantially increases the permeance of the core by eliminating a large air gap, it does 
not affect the distribution of the leakage flux in the winding space outside of the center 
leg.1 If the transformer being modeled has an EE core of high permeability instead of a 
pot core, the infinite-solenoid model is less accurate, but it is shown in Chapter 6 that 

1This leakage flux is due to the second cause discussed in Section 2.3, namely, layer current distributed 
over the finite height of the conductor. 
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Figure 3.1: Steps of the limiting process which defines the term infinite 
solenoid. (a) A toroidal solenoid of ring radius RR,1, which may or may 
not have a core present. A current Ive flowing in the solenoid produces a 
magnetic field intensity B inside the torus. (b) If the ring radius is increased 
by a factor of ten, but the current in the winding and the number of turns per 
meter along the solenoid remain constant, the same magnetic field intensity 
Bis produced inside the solenoid. (c) As the ring radius approaches infinity, 
the device approaches an infinite solenoid. 
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Figure 3.2: (a) Section of a one-layer infinite solenoid surrounded by a mag
netic "yoke" with infinite permeability. The magnetic material provides a 
return path for the flux that is equivalent to a return path "at infinity." 

the model still gives good results. 
As seen in this discussion, the multilayer infinite solenoid in Fig. 3.3(a) may be 

analyzed to determine the magnetic-field distribution in the winding space of the trans
former model in Fig. 3.3(b ), which has equivalent-foil windings surrounded by a high
permeability magnetic core. The value of the magnetic field outside an infinite solenoid, 
the starting point of any analysis, is established in Section 3.1.1. Then de field distribu
tions are analyzed in Section 3.1.2, followed by a brief discussion of ac field distributions 
in Section 3.1.3. 

3.1.1 The Magnetic Field Outside an Infinite Solenoid 

In the infinite solenoid of Fig. 3.l(c), all of the magnetic flux generated by current 
flowing in the solenoid remains inside the torus, which implies that the magnetic field is 
zero everywhere outside the infinite solenoid regardless of the current flowing. For this 
statement to be true, is must be assumed that no externally generated magnetic fields 
are present. Another necessary assumption is that the component of the current along 
the axis of the solenoid is negligible, which requires that the solenoid be tightly wound. 
Both of these assumptions are made throughout this report. 

The fact that the magnetic field is zero everywhere outside an infinite solenoid can also 
be proven rigorously from the Biot-Savart law, which gives the magnetic field produced 
at any point in space by a differential current element at another point in space. By 
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Figure 3.3: (a) Section of a two-layer infinite solenoid. (b) Pot-core trans
former model containing the infinite-solenoid section in Part (a). The trans
former model has winding layers of height hcul and hcu2 and breadth bwin 

as indicated. 
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integrating over a finite-length cylinder of current, and letting the length of the cylinder 
approach infinity, the net magnetic field at any point outside the cylinder can be shown 
to be zero. 

3.1.2 Field Distribution with DC Current 

It is stated in the introduction of this chapter that the magnetic field intensity everywhere 
in a transformer, except inside the conducting material, is independent of frequency and 
depends only on the net current flowing in each layer. This statement is proven below 
using Ampere's law. This fact, together with the earlier deduction that the fields in 
an infinite solenoid approximate those in an actual transformer, implies that an infinite 
solenoid with de currents flowing in its layers may be used to calculate the instantaneous 
ac magnetic field present in the interlayer spaces of a transformer. Such a de analysis does 
not, however, give accurate results for the ac field inside the conducting material. The 
analysis is carried out below for a single-layer air-core infinite solenoid, then extended 
to a two-layer solenoid, and finally to an infinite solenoid that has a magnetic core. 

3.1.2.1 Ampere's Law Applied to a Single-Layer Infinite Solenoid 

Having established that the magnetic field is always zero outside an infinite solenoid, 
Ampere's law for static fields 

f H • dl = /" f J • dS 
J'i(s) j S(!) 

(3.1) 

may be used to calculate the magnetic field distribution inside an infinite solenoid car
rying de current as shown in Fig. 3.4. The integration path l(S) is the closed curve 
or loop l which bounds a surface S, while the surface of integration S(l) is a surface S 
bounded by the closed curve l. The directions of the differential vectors dl and dS are 
chosen to be consistent with each other according to the right-hand rule. The direction 
of the differential-length element dl is chosen to be "clockwise," and the direction of 
the differential-surface-element vector dS is chosen to be "into the paper" as shown for 
loop /i. The dots and the crosses in the current-conducting foil indicate that current is 
flowing into the right-hand side of the solenoid and out of the left-hand side. 

By using the pictured series of closed curves as the integration pa~hs for Ampere's 
law, it is shown below that the magnetic field is uniform inside the solenoid and directed 
vertically in what is defined as the positive z-direction. In addition, it is shown that the 
field changes linearly with the radius r across the height of the conducting layer. 

First the following conditions are established to simplify the problem: 

1. Only de current flows in the solenoid, for which the current density in the conduct
ing layer is uniform. Uniform current density is also a very good approximation 
whenever the excitation current is varying slowly. 

2. There are no externally generated magnetic fields present. 
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Figure 3.4: Integration paths used with Ampere's law to calculate the mag
netic field intensity Hz(r) in an infinitely long solenoid conducting at a uni

form current density J. 
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3. The infinite length of the solenoid and its uniformity in the z-direction dictate that 
the magnetic field generated by the solenoid is everywhere parallel to the axis of 
the solenoid. The reference or positive direction for H is chosen to be "up," in the 
direction of the Hz(r) vectors shown. 

4. The integration paths are chosen to be rectangles so the magnetic field intensity 
H is either perpendicular or parallel to di at every point along the path. 

5. The surface of integration is chosen to lie in the plane of the figure, which causes 
dS to be parallel to the current-density vector J. 

For any of the four loops h to /4 in Fig. 3.4, the left side of Ampere's law (3.1) 
may be rewritten as the sum of the line integrals along each of the four segments of the 
rectangular integration path l. 

1 H. di = r H. di + r H. di + r H. di + r H. di (3.2) Ji lieft ltop lright lbottom 

By condition 3 above, His always perpendicular to di along the top and bottom segments 
of the chosen integration paths, causing the second and fourth terms on the right-hand 
side to be zero. 

Loop h of Fig. 3.4 may be used to show that the magnetic field outside the solenoid 
is uniform. After performing the remaining dot products in (3.2) for this loop, 

(3.3) 

where Hz(-ro) and Hz(-ri) represent the magnetic field intensity at the locations r = 
-ro and r = -r1, respectively. The loop breadth b1 in the third term is negative because 
di is directed in the negative-z direction along the right segment of the integration path. 

The right side of Ampere's law (3.1) is zero for loop h because the current density 
J is zero everywhere inside this loop. Setting (3.3) equal to zero yields 

(3.4) 

which confirms that the field outside the solenoid is uniform, shown in the previous 
section to be zero. 

For loop /2 in Fig. 3.4, where r = r2 is the midpoint of the conducting layer of height 
hcu, the left side of Ampere's law may be written from (3.2) as 

J H•dl=O + O - b2Hz(-r2) + 0 lz2 (3.5) 

which makes use of the fact that Hz(-ro) = 0. With r2 exactly at the center of the 
conducting _layer, the corresponding right side of Ampere's law (3.1) is 

(3.6) 
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where J is the de value of the current-density vector J. The negative sign occurs because 
J is directed opposite dS. Equating (3.5) and (3.6) 

( ) 
hcu 

· Hz -r2 =J2 
Similar equations may be written for loop l3. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Moving the right side of loop ls to any position inside of the conducting cylinder would 
not change the calculated value of H. Stated differently, the magnetic field intensity is 
uniform and given by (3.10) everywhere inside the solenoid. In addition, (3.7) and (3.10) 
show that the magnetic field intensity varies linearly across the height of the conducting 
layer. 

Finally, the corresponding equations for loop l4 of Fig. 3.4 confirm once again that 
the magnetic field is uniformly zero everywhere outside the infinite solenoid. 

0 

(3.11) 

(3.12) 

(3.13) 

The two terms on the right side of (3.12) correspond to the left and right intersections 
of surface S(14) with the conducting cylinder. By continuously varying the position of 
the right side of the rectangular integration path from r = -r1 to r = r4, one obtains 
the profile of magnetic field intensity shown at the bottom of Fig. 3.4. 

3.1.2.2 Magnetic Field in a Two-Layer Infinite Solenoid 

Figure 3.5 shows a solenoid which has two concentric and infinitely long layers with 
layer heights hcul and hcu2 and average radii Tavn and Tavg 2 respectively. These radii 
are different from the "ring" radii in Fig. 3.1, which approach infinity for any infinite 
solenoid. The inner layer of the solenoid in Fig. 3.5 is called layer 1 and is wound with 
n1 turns of rectangular conductor per meter of the solenoid in the z-direction. The 
outer layer is wound with n2 turns of square conductor per meter of the solenoid in 
the z-direction. For convenience of discussion for the remainder of this illustration, n2 

is chosen to be twice n 1 . The layers are shaded differently to emphasize that they are 
not necessarily two layers of a single winding. Rather, each layer is considered to be a 
separate element that can carry current in either direction independent of the current in 
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Figure 3.5: Infinitely long solenoid with two layers. The inner layer has n1 

turns per meter, average radius ravgi, and height hcul• The outer layer has 
n2 turns per meter, average radius ravg 2 , and height hcu 2 . 



Section 3.1.2 Modeling Multiwinding Transformers 39 

the other layer of the solenoid. The layers could carry the same current, but this is not 
required. 

Assuming no external magnetic field is present, Fig. 3.6( a) shows the field distribution 
that exists around the solenoid when the outer winding layer is carrying a current I2,DC 
and the inner layer is carrying no current. Because the relative permeability of copper 
is close to one, and because there are no time-varying fields which would induce eddy 
currents in the inner conducting layer, the magnetic field distribution is exactly the same 
as in Fig. 3.4 where no inner layer is present. From (3.10), the magnetic field intensity 
everywhere inside the inner surface of layer 2 is given by 

(
n2I2nc) 

Hz= Jhcu = hc~
2 

hcu2 = n2I2,DC (3.14) 

where n2 has u:nits of turns per meter. 
Instead, if the inner layer is excited with a current I1,DC and the outer layer is left 

open-circuited, the plot of magnetic-field-intensity distribution appears as in Fig. 3.6(b). 
As in the case above for current flowing only in the outer layer, there is no z-directed 
magnetic field created outside an infinitely long cylindrical layer by a current Bowing in 
that layer. The magnetic field in the region surrounded by layer 1 is n1li,Dc, produced 
by the current in layer 1. In this illustration, the magnetic field intensity n1Ii,nc is 
shown as half the value n2I2,DC in Part (a). Thus for this example, since n1 = n2/2,the 
magnitudes of the two currents li,DC and I2,DC are equal. 

The individual magnetic fields described above can be superposed to give the net 
magnetic field that exists in a solenoid of two layers. The currents Ii,nc and I2,DC need 
not be equal and their directions need not be the same. In fact, there are no restrictions 
placed on these currents at all. 

However, if li,DC = I2,DC, which implies that the currents are equal and flow in 
the same direction, the magnetic field contributions of the two layers in the solenoid 
add, producing the field distribution shown in Fig. 3.6(c). The field strength between 
the two layers is the same as when only the outer layer carries current, but the field 
inside the inner layer is the sum of the fields produced by the individual layer currents. 
If the direction of the current in layer 1 is reversed, the net magnetic field distribution 
in the solenoid is the difference between the two contributions. This is illustrated in 
Fig. 3.6(d). Again, the field intensity between the two layers is that due to current 
in the outer layer only, while the field intensity inside the inner layer is the result of 
superposing the fields generated by the currents in both layers. These same plots of 
magnetic field intensity versus radius may be obtained by applying Ampere's law to a 
series of rectangular integration paths similar to those in Fig. 3.4. 

The magnetic field intensity H that exists in the space surrounded by any winding 
layer establishes lines of magnetic flux cf, which link the turns of that infinitely long layer 
by closing on themselves via a Bux path at infinity [19, p. 356]. That flux path lies inside 
the torus of infinite ring radius shown in Fig. 3.l(c). Any flux in the innermost region 
of the solenoid links all the layers of the solenoid, but the flux in the conducting layers 
themselves and in the spaces between the conducting layers links only the layers further 
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Figure 3.6: Field distribution inside an infinitely long two-layer solenoid with 
( a) only the outer layer conducting, {b) only the inner layer conducting but 
at half the current density, (c) both layers conducting the stated currents in 
the same direction, and (d) both ]ayers conducting the stated currents but 
in opposite directions. The lengths of the arrows are proportional to the 
strength of the magnetic field in the different regions. 
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Figure 3. 7: Field distribution inside an infinitely long two-layer solenoid 
with ( a) the same current density in both layers, and (b) current densities 
of equal magnitude but opposite direction in the two layers. The lengths 
of the arrows are proportional to the strength of the magnetic field in the 
different regions. 
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from the center axis. Thus the winding space of the infinite solenoid, which includes 
the layers of conducting material and the spaces between them, contains the flux which 
is of particular interest to us because it is directly analogous to the leakage flux in a 
transformer. 

To apply the infinite-solenoid model to the transformers that are of interest here, 
particular relationships are assumed between the magnetic fields generated by each of 
the two layers of the infinite solenoid. If n1 = n2 and li,DC = I2,DC, then the two layers 
can be viewed as simply two series-connected layers of a single winding. This is the type 
of problem, namely one of single-winding multilayer series-connected solenoids, that M. 
P. Perry examines in [14]. In this instance, the equal magnetic-field contributions of 
the two layers n1li,Dc and n2I2,DC add, resulting in the field distribution shown in 
Fig. 3.7(a). If, however, the direction of the current in the inner layer is reversed such 
that n1ft,Dc = -n2I2,DC, the magnetic field contributions of the two layers oppose each 
other, producing the net magnetic field distribution shown in Fig. 3.7(b). This case 
is similar to the condition of instantaneously equal and opposite ampere-turns in the 
windings of a transformer, where it is significant to note that the magnetic field inside 
the inner layer is completely canceled to give zero magnetic field intensity. 
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3.1.2.3 The Effect of a Magnetic Core on a Two-Layer Infinite Solenoid 

The next step in developing a model for a real transformer is to place magnetic core 
material inside of the infinite solenoid as illustrated in Fig. 3.8. ff that core has infinite 
permeability, it "forces" equal and opposite ampere-turns in the winding layers of the 
solenoid at all instants of time. This is shown on the characteristic curve of B versus H for 
the core material in Part (a) of the figure at an arbitrary time when the core flux density 
is at Beore(t) and the net magnetic field intensity Hz,eore(t) = n2I2,DC - n1li,Dc = 0.2 

Only such ideal, infinite-permeability transformer cores are considered in this report, 
but they are good approximations for real cores as long as the component of primary 
current which excites the core is small relative to the component of primary current 
which supplies the loads. 

The effect of a low-permeability core on the magnetic field distribution across the in
finite solenoid is shown in Fig. 3.8(b). "Low" permeability is defined as any permeabiltiy 
that produces an exciting current of the same order of magnitude as the component of 
primary current that supplies the loads. With a low-permeability core, the net field 
in the center of the solenoid is not zero. In fact, it is a function of the flux density 
B in the core, which depends upon the history of the voltage applied to the core. At 
the particular instant t1 shown in the figure, the core flux density is at Bc:ore(t1), and 
the B versus H characteristic of the core material requires that the net magnetic field 
intensity be Hz,c:ore(t1). With the current directi01is shown, this net magnetic field in
tensity can only be achieved by having the field produced by the outer winding layer 
greater than that produced by the inner winding layer by just this amount, that is, 
Hz,eore(ti) = ln2I2,Dc(t1)l - ln1li,Dc(ti)I. This situation is shown in the associated plot 
of Hz(r,t1) versus r, where the magnetic field intensity inside the inner winding is not 
zero but varies in direct proportion to the flux density in the core. For the outer winding 
to contribute a larger component of field intensity inside the core than the inner wind
ing, as shown in the figure, the outer winding must be connected to a source while the 
inner winding may be connected to a load. The case of a low-permeability core is not 
considered further in this report. 

In summary, for an infinite solenoid having any number of concentric layers, no 
magnetic field is produced outside the solenoid for any combination of currents flowing 
in the layers. In contrast, the magnetic field in the space enclosed by the innermost 
layer depends on the currents flowing in all the layers, and it is zero only if the net 
field intensity-or mmf-produced by all the currents is zero. Because the material 
characteristics of a high-permeability magnetic core require a transformer to operate 
with essentially zero net mmf, the requirement of zero net mmf is imposed on a multilayer 
infinite solenoid when modeling such a transformer. 

2 The magnetic path length is implicit in n 1 and n 2 , which have units of turns per meter. 
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Figure 3.8: For an infinitely long two-layer solenoid containing a magnetic 
core, the field distribution in the winding space and the B versus H charac
teristic for ( a) infinite-permeability core material and (b) finite-permeability 
core material. The horizontal vectors associated with the B versus H curves 
represent the magnetic field intensity in the center of the solenoid produced 
by each of the two winding layers. The difference between the horizontal 
vectors gives the magnetic field intensity inside the inner winding layer. 
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3.1.3 Field Distribution with AC Current 

Since the discussion to this point concerns only direct currents in the layers of the 
solenoid, the magnetic field intensity changes linearly with radius over the height of the 
current-carrying layers of the solenoid. This is not the case when the currents in the 
solenoid are varying in time. When the excitation frequency becomes sufficiently high, or 
the conductor size becomes sufficiently large, skin and proximity effects force the current 
in the conductors to flow primarily near the surf aces of the conductors. This change in 
current density also changes the profile of the magnetic field intensity across the height 
of the conductive layers. These shifts in the distributions of the current density and the 
magnetic field intensity inside the conductors appear at the terminals of the solenoid
or at the terminals of the transformer that it models-as a change in the characteristic 
impedances between the various windings of the device. 

Although the distribution of the magnetic field in the interior of the conductors varies 
with excitation frequency, the magnetic field intensity that any one layer contributes to 
the net magnetic field in the space between winding layers is independent of frequency. 
The field between layers is a function only of the net current in each of the surrounding 
layers . .A13 long as the net current in each layer of conductors remains constant for changes 
in excitation frequency, the magnetic field in the spaces between the layers is independent 
of frequency. The skin and proximity effects, which cause the nonuniform distribution 
of current and the nonlinear profile of magnetic field intensity in the conductors, are 
discussed qualitatively in the next section. 

3.2 EDDY-CURRENT EFFECTS IN INFINITE 
SOLENOIDS 

The basic issues of magnetic-field analysis are addressed in Section 3.1, which describes 
the field-intensity distribution in an infinite solenoid excited by direct current. The 
nonuniform distribution of current that occurs as the excitation frequency increases is 
mentioned, but so far there has been no effort to explain its causes or to quantify the 
severity of its impact on circuit characteristics. 

With this background in place, skin and proximity effects can be introduced into the 
analysis of the infinite solenoid. These effects have the same impact on the layers of 
this infinite solenoid as they do on the windings of transformers. Namely, an increase in 
excitation frequency causes an increase in the loss in the winding layers and a reduction 
in the total amount of energy stored in the magnetic field that exists in the winding 
layers. 

3.2.1 Skin Effect 

An isolated conductor carrying alternating current i{t) generates a time-varying circular 
magnetic field H{t) which exists both inside and outside the conductor. Such a conductor 
and its associated field are shown in Fig. 3.9. 
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i(t) 

Figure 3.9: Skin effect in a conductor carrying an alternating current i(t). 
The alternating current creates the circularly directed magnetic field shown 
as solid-line circles outside the conductor and as dotted-line circles inside the 
conductor. The time-varying magnetic field inside the conductor induces the 
eddy current iE shown as circulating around the dashed rectangular paths. 
At the instant shown, the current i(t) is increasing in the direction indicated. 
The net instantaneous current flowing in the conductor is unchanged by the 
eddy currents, but the distribution of the current over the cross section of 
the conductor changes. 
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The circular alternating field inside the conductor induces eddy currents iE in the 
conductor which are directed to produce a field that partially cancels the "main" al
ternating field produced by the time-varying current. These induced eddy currents are 
directed such that they add to the main current on the surface of the conductor and sub
tract from it in the interior region. The superposition of the main alternating current 
and the induced eddy currents results in a decrease in the current density in the interior 
of the wire and an increase in the current density near its surface. Because the intensity 
of the induced eddy currents is directly proportional to the rate of change of the main 
current, the nonuniform distribution of the current in a conductor is more pronounced 
for higher excitation frequencies. This change in the current-density distribution caused 
by the time-varying current in the wire is the phenomenon usually referred to by the 
term skin effect in current-carrying conductors. 

3.2.2 Proximity Effect 

The nonuniform current distribution over the cross section of a conductor attributed to 
skin effect is due solely to the time-varying magnetic field generated by the current in the 
conductor itself. Another frequency-dependent eddy-current phenomenon occurs in any 
conductor that is placed in a region of space containing a time-varying magnetic field that 
has a component normal to the axis of the conductor. Since a conductor located close to 
a wire that carries alternating current experiences such an externally imposed magnetic 
field, this eddy-current phenomenon is often called the proximity effect. It would be more 
accurate perhaps to call this the external-field effect since it is actually the presence of 
the time-varying magnetic fields generated by nearby windings that causes the so-called 
proximity effect. In this document, however, the common term proximity effect is used. 

Whenever a conductor is located in a region of space that contains an alternating 
magnetic field which is directed normal to the axis of the conductor, there are eddy 
currents induced in the conductor which act to oppose the penetration of this external 
field. Fig. 3.10 shows such a situation for a conductor with a circular cross section in 
a uniform time-varying magnetic field that is normal to the axis of the conductor. The 
conductor is isolated in space and carries no net current. The uniform external field Hezt 

in Fig. 3.10 is assumed to be increasing in magnitude in the indicated direction. The 
time-varying field lines which pass through the conductor induce eddy currents in the 
conductor, and these eddy currents are directed to oppose the increasing magnetic field. 
In Fig. 3.lO(a), the eddy currents are shown as circular currents which surround each of 
the crosses that represent the downward directed external field Hezt· 

The cross-sectional view of the conductor in Fig. 3.lO(c) shows that the net effect of 
the induced eddy currents is the generation of a circulating current that flows into the 
right side of the cross section and out of the left side. The upwardly directed arrows 
in this cross-sectional view show the opposing magnetic field generated by the eddy 
currents. The superposition of this reaction field and the external field that induces it 
results in a reduction in the net amount of magnetic flux that penetrates the conductor. 
Since the energy stored in the magnetic field in any region of space is directly related 
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Figure 3.10: Proximity effect for a cylindrical conductor in a uniform 
time-varying magnetic field. (a) Top view, showing an eddy current induced 
around each field line that passes through the conductor (b) Side view. ( c) 
Cross-sectional view, showing the net opposing field Heddi/ generated by the 
eddy currents. 
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to the magnetic field intensity there as explained in Section 3.3.2, a reduction in the 
magnetic flux that penetrates a conductor corresponds to a reduction in the magnetic 
energy stored in the conductor. 

3.2.3 Combined Frequency Effects 

Skin and proximity effects are combined when a conductor that carries an alternating 
current is placed in an external alternating field. This is exactly the situation that exists 
for the conductors in the layers of an infinite solenoid when these layers carry time
varying currents, and the same situation exists for transformer windings. The essence of 
the combination of these effects is that the current in each layer of conductors produces 
a skin effect in itself and produces a proximity effect in other conductors that are close 
to it. 

While the infinite solenoid is the object of this analysis, a structure which has an 
infinite number of conductors in each layer, all carrying the same current, skin and 
proximity effects are just as evident in two side-by-side conductors. Figure 3.11 illustrates 
the combination of these effects for two round conductors located next to each other 
when the conductors carry currents in opposite directions. Parts (a) and (b) of the 
figure show the effects of the individual left-hand and right-hand currents respectively; 
Fig. 3.ll(c) shows the combined effects of the two currents. For this case of two side
by-side conductors that carry currents in opposite directions, the current in either of 
the conductors tends to flow mostly on the skin of the conductor and more on the side 
nearest to the other conductor as shown in the figure. 

Figure 3.12 shows the individual and combined effects of currents in the same direc
tion in two side-by-side conductors. This figure shows that for two conductors carrying 
current in the same direction, the currents tend to flow mostly on the skin of the con
ductors and more on the side furthest from the other conductor. From the density of the 
magnetic field lines in Fig. 3.ll(c) and Fig. 3.12(c), it can be seen that, in both cases, 
the current in the conductors is concentrated in the region of highest flux density. 

When layers of conductors which all carry the same current are located next to 
each other, the combined eddy-current effects cause the current-distribution patterns 
illustrated in Fig. 3.13. The situation for two layers of conductors which carry current in 
the same direction is shown in Fig. 3.13(a); Fig. 3.13(b) shows the situation for two side
by-side layers which carry oppositely directed currents. As with the single conductors 
in Figs. 3.11 and 3.12, the currents in the layers of Fig. 3.13 concentrate in the region of 
highest magnetic flux density. This fact is important to remember when considering the 
current distribution in the winding layers of an infinite solenoid or a transformer. 

This entire discussion of eddy currents concerns alternating magnetic fields. An alter
nating magnetic field induces the eddy currents that cause the nonuniform distribution 
of the current over the cross section of the conductors. For direct current flowing in 
the conductors, the magnetic field patterns in Figs. 3.11 to 3.13 would be similar to 
those shown, but there would be no crowding of current in the conductors in the regions 
of highest field strength. Instead, the current density would be uniform across all the 
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(a) 

(b) 

(c) 

Figure 3.11: Combined skin and proximity effects in two side-by-side round 
conductors that carry time-varying currents in opposite directions. Dark 
regions show areas of high current density. ( a) The effect of a current in the 
left-hand conductor. (b) The effect of an oppositely directed current in the 
right-hand conductor. (c) The combined effects of the two currents. 
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(a) 
@) 

I 

(b) 

(c) 

Figure 3.12: Combined skin and proximity effects in two side-by-side round 
conductors that carry time-varying currents in the same direction. Dark 
regions show areas of high current density. (a) The effect of a current in the 
left-hand conductor. (b) The effect of an equal current in the right-hand 
conductor. ( c) The combined effects of the two currents. 
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Figure 3.13: Simplified view of the combined skin and proximity effects in 
two side-by-side layers of conductors which carry time-varying currents. ( a) 
Approximate effect of equal currents in the same direction in the two layers. 
In reality, the field lines are not straight and they do not entirely cancel in the 
region between layers. (b) The approximate effect of equal but oppositely 
directed currents in the two layers. 
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conductors. 
It is also important to realize that the net magnetic field between the layers of 

conductors is assumed to be tangential to the layers. This is usually true near the 
"middle" of a winding layer with respect to the z-direction in Fig. 3.5, but it is less 
likely to be true at the ends of the layer. As stated in Section 1.1.2, this parallel-field 
assumption is critical to the analysis developed in Part I of the present document. 

3.2.4 The Effect of the Field Distribution on Impedance Values 

The crowding of current due to the effects of time-varying magnetic fields increases the 
effective resistance of a wire. The resistance R of any wire is given by 

R=-l 
uA 

{3.15) 

where l is the length of the wire, u is the conductivity of the material, and A is the 
effective cross-sectional area of the conductor. Since current tends to flow only near 
the surface of the conductor as the frequency of the sinusoidal magnetic fields increases, 
the effective cross-sectional area of the wire decreases, which causes an increase in the 
resistance of the wire. 

The relationship between the current distribution in the conductors and leakage 
inductance can be explained qualitatively as follows. The eddy currents induced near 
the surfaces of the conductors contribute to the magnetic field in a direction that tends 
to oppose the penetration of the external flux into the conductors. As a consequence, 
the magnetic field intensity inside the conductors is reduced. A lower magnetic field 
intensity produces less energy storage, which corresponds to a lower leakage inductance. 

The distribution of magnetic field intensity for de or low-frequency excitation in an 
infinite solenoid is developed in Section 3.1.2. Figure 3.4 in that section shows that the 
current distributes evenly across the solenoid layer at low frequencies and the magnetic 
field intensity for such a low-frequency case changes linearly across the height of each 
winding layer. When the frequency of the layer currents increases, however, skin and 
proximity effects combine to cause the current to crowd toward the surfaces of the 
conductors in the regions of highest flux density. This redistribution of current in the 
conductors of a winding layer acts to shield the interior of the layer from the time-varying 
magnetic fields, which means that at high frequencies, the total amount of energy stored 
in the magnetic field that exists in any winding layer is lower than it is with low-frequency 
excitation. 

The decrease in the average magnetic energy stored in and around the layers of 
any two windings under short-circuit conditions correlates to a decrease in the leakage 
inductance between those two windings. One of the main objectives of the analysis in the 
next chapter is to develop analytical expressions for the variation of the magnetic field 
and the current density in a layer of conductors as a function of the excitation frequency. 
Such results are then used to formulate expressions for the frequency-variation of the 
characteristic impedance between each pair of windings in a multiwinding transformer. 
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The analysis described so far establishes the groundwork needed to solve for the spatial 
distribution of the magnetic field intensity and current density in the winding layers 
of an infinite solenoid, and for the magnetic field intensity between the winding layers, 
under conditions of high-frequency sinusoidal excitation. In Section 3.3.1 below, the 
problem of calculating these distributions is set up to be solved in the next chapter. 
There, it is seen that the current-density and field-intensity distributions are determined 
solely by the phasor values of the magnetic field intensity that exist at the surfaces of 
the winding layers. Section 3.3.2 then tells how the solutions for the magnetic-field
intensity and current-density distributions can be used to find the power dissipation and 
magnetic-energy storage in the layers. 

3.3.1 Modeling an Infinite Cylindrical Layer as an Infinite Current 
Sheet 

In an infinitely long cylindrical winding layer, the magnetic field intensity depends only 
on the distance r from the center axis and is directed purely in the z-direction. The 
general expression in cylindrical coordinates for a three-dimensional time-varying mag
netic field intensity function H(r, 4>, z, t) can be written as simply Hz(r, t). When the 
excitation currents are sinusoidal, the magnetic field intensity can be written as a vector 
phasor field, representing a vector field in which all magnitudes vary sinusoidally with 
time. In symbols, H(r) = JL(r)az where Hz(r) is a scalar complex phasor which is a 
function of the radius coordinate r, and 3.z is the unit vector in the z-direction.3 

The above assumptions permit us to solve for the current distribution in the winding 
layers using Maxwell's equations written in their one dimensional form for cylindrical 
coordinates. M. P. Perry presents such an analysis in [14] where he shows that for the 
cylindrical current sheet problem, the currer:it density in a winding layer can be written in 
terms of Bessel functions. Perry also argues, however, that it is often possible to neglect 
the curvature in the cylindrical winding layers and simply treat the layers as current 
sheets that extend infinitely in the direction of depth. He asserts that the curvature 
of the winding layers can be neglected if "the conductor thickness ( designated here the 
layer height hcu) is small compared to the total coil diameter [14, p. 118]." Figure 3.14 
shows a cylindrical current sheet which is modeled by an infinite rectangular current 
sheet. Looking down at the top of any particular part of the cylindrical sheet as shown 
in Fig. 3.14(b), it seems reasonable that as long as the curvature of the surface of the 
cylinder is relatively small, each local section of the cylindrical conductor can be approx
imated by a flat surface without introducing substantial error. If such an approximation 
is valid, the winding layers can be analyzed as current sheets in rectangular coordinates, 
which is substantially easier than the analysis in cylindrical coordinates. It is seen later 

3 See Section 1.3 for a. discussion of the use of pha.sor nota.tion. 
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Cylindrical Winding 
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(a) Top View of 
Part of a 

Cylindrical Layer 

(b) 

----

Section 3.3.1 

Current Sheet 
Approximation 

(c) 

Figure 3.14: (a) Cylindrical layer of an infinite solenoid. (b) Detailed top 
view of the cylinder. ( c) Infinite current sheet used to approximate the layer 
if the radius of the cylinder is large relative to the height of the layer. 
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Figure 3.15: Model of an infinite current sheet. The sheet extends to infinity 
in they (depth) and z (breadth) directions. The height of the sheet is shown 
as hcu in the x-direction. 
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in this report that the results of a rectangular-coordinate analysis can be written in 
terms of hyperbolic sines and cosines instead of Bessel functions. In this document, it 
is always assumed that the radius of curvature of any winding is much larger than the 
height of the conductors; therefore, only rectangular coordinates are used. 

For the current-sheet approximation, a general three-dimensional time-varying mag
netic field intensity function is written as H(x, y, z, t) where the x, y, z directions are as 
defined as the height, depth, and breadth, respectively, as shown in Fig. 3.15. 

For sinusoidal excitation, phasor notation is used to represent the time-varying mag
netic field intensity H(x, y, z, t). The result is the vector phasor function H(x, y, z) of the 
x, y and z coordinates. As the magnetic field intensity in an infinitely long conducting 
cylinder is a function of the radius r only, in the infinite current sheet it is a function 
of the x-direction only as defined in Fig. 3.15. Therefore, in the one-dimensional case, 
H(x, y, z) is written as simply H z(x)az. 
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3.3.2 Power and Magnetic-Energy Density in a Region of Space 

The motivation for modeling a round-wire or other physically realizable winding as an 
infinite conductor is that Maxwell's field equations can be solved analytically for such 
a simple geometry. Further, the motivation for solving these equations explicitly lies in 
the following basic equations that relate the current density and magnetic field intensity 
in space to the amount of dissipated power and stored energy, respectively, in that space. 
From electromagnetic theory, in any conductor with conductivity <T and permeabilityµ, 
the power pd(t) dissipated per unit volume and the energy wm(t) stored in the magnetic 
field per unit volume are given by 

Wm(t) · 

IJ(t)l2 
<T 

µ IH(t)12 
2 

(3.16) 

(3.17) 

The task of finding the power dissipation and magnetic-energy storage in any winding 
space reduces, therefore, to solving for the current density J and the magnetic-field 
intensity H in that winding space, and evaluating the volume integrals of (3.16) and 
(3.17) over the space. In this chapter, it is shown how the frequency-independent values 
of H are calculated for the interlayer spaces of a transformer winding structure. Because 
H is uniform in each interlayer space, the corresponding volume integral of (3.17) is 
trivial. Of course, no current flows in the interlayer spaces, making Pd zero there. 

Inside the conductors, the current density and magnetic field intensity are compli
cated functions of frequency. By modeling each cylindrical winding layer as an infinite 
current sheet, it is possible to derive expressions which give the field distribution in each 
layer of conductors based solely on the thickness of the layer and the magnetic field 
intensity H at the two surfaces of the layer, determined by the methods of this chapter. 
The derivation for the magnetic field intensity Hand the current density Jin an infinite 
current sheet is carried out in the next chapter. Afterwards, the volume integrals of 
(3.16) and (3.17) can be calculated for the winding layers as well as the interwinding 
spaces, and the total power dissipation and energy storage are thus obtained. Then 
the goal of this analysis can be addressed: deriving expressions for the high-frequency 
impedances between the windings of actual transformers. 
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Chapter 4 

Field Solution for an Infinite 
Current Sheet 

To arrive at expressions for the energy storage and power dissipation within the winding 
space of a transformer structure, we must first obtain expressions for the magnetic-field
intensity and current-density distributions within each winding layer. However, when 
the windings of a transformer are excited with ac currents, the magnetic field intensity 
and current density within the conductors become distributed in a complicated and 
nonuniform fashion . .A13 a result, we must resort to analyzing the distribution of the 
magnetic field intensity and current density by applying Maxwell's field equations . .A13 
argued in Chapter 3, we can model a given layer of a transformer winding structure as 
an infinite current sheet. Therefore, in this chapter we apply Maxwell's equations to an 
infinite current sheet and arrive at analytical expressions that approximately describe the 
magnetic-field-intensity and current-density distributions within transformer windings. 
We then make a detailed investigation into the peculiar nature of these distributions 
through an extensive array of examples and graphical illustrations. Finally, using the 
expressions for the magnetic-field-intensity and current-density distributions, we derive 
expressions for the average power dissipation and average energy storage per square 
meter for an infinite current sheet. 

4.1 APPLICATION OF MAXWELL'S EQUATIONS TO 
THE INFINITE CURRENT SHEET 

4.1.1 Description of Problem 

Figure 3.15 shows the infinite current sheet we use to model the cylindrical winding layer. 
In this figure, a set of axes designates the coordinate system that applies to the following 
analysis. The origin of the system is located at the left-hand side of the current sheet. 
The x-coordinate axis is in the direction of layer height; the y-direction is normal to the 
indicated cross section of the current sheet and lies along the direction of depth; and the 
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z-axis is in the direction of breadth. The infinite sheet has a height designated as hcu• 
To analyze the fields in such a current sheet, we need only the following assumptions: 

• The current density and the magnetic field intensity vary sinusoidally with time. 

• The media are linear. 

• The magnetic field at the surfaces of the sheet are directed purely in the breadth 
or z-direction. That is, H(x, y, z) = H z(x)az where az is the unit vector in the 
z-direction. The boundary values of this field are given as Hz(O) and Hz(hcu)-

• The current sheet is long enough in the breadth and depth directions that the 
spatial variation of the magnetic field depends only on changes in the x-direction, 
which is to say that the magnetic field is determined by the height, or x-coordinate, 
and does not vary with changes in depth or breadth. This is an alternate statement 
of the infinite-current-sheet assumption. 

• The current sheet is stationary with respect to the observer. 

What we seek in this analysis is a method for describing the fields inside the conduc
tive sheet of a material with conductivity u and permeability µ that is based only on the 
values of the sinusoidally varying magnetic fields on the surfaces of the sheet. This type 
of boundary-value problem where the spatial magnetic field intensity decreases as the 
field penetrates the material is the same mathematically as the problem of the diffusion 
of heat or gases into a medium where the surface temperature or gas concentration is 
made to vary sinusoidally with time. The mathematical statement of the differential 
equation that defines this problem is sometimes referred to as the diffusion equation, 
and we shall use this term in the analysis which follows. 

4.1.2 Derivation of the Diffusion Equations 

The diffusion equation for the case of sinusoidal steady-state variations of the electric 
field E is derived in Appendix A in terms of the the complex wave number k and the 
complex vector phasor E as 

(4.1) 

where the complex wave number is a material characteristic given by 

(4.2) 

In the good conductor case-which is the only case of importance here-the permittivity 
E and the permeability µ are given by their free-space values Eo = 8.854 x 10-12 F /m 
and µ 0 = 4,r X 10-1 H/m , respectively. Since the conductivity u is far greater than the 
product of the permittivity of free space Eo and the angular frequency w, we can assume, 
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for any frequency of interest in our analysis1, that wµ 0 <T >> w2µ 0 c0 • Therefore, for a 
good conductor, we can write the complex wave number as 

Using the relation for the square root of j 

we can write ( 4.3) as 

where 

VJ 

k = ✓W~o<T (1 + j) 

I 1£ = 1(1+ j) I 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The expression for 8 above is referred to as the skin depth for the conductive material 
at the excitation frequency w. For any general conducting sheet with a sinusoidally 
varying electric field at the surface of the conductor, the magnitude of the field strength 
at a distance equal to one skin depth into the material is equal to e-1 times the value 
of the field at the material surface. That is, at one skin depth, the strength of the 
electric field is 36.8% of its value at the conductor surface; and at a depth of 38, the 
electric field strength is reduced to 5.0% of the value at the surface. The solution to 
( 4.1) is a phasor from which the instantaneous spatial distribution of the electric field 
can be determined. The solution is general and applicable for any good conductor under 
sinusoidal steady-state field conditions. 

The diffusion equation given above in (4.1) is written in terms of the electric field; 
an analogous relationship can be written in terms of current density J by using the 
constitutive relationship J = <TE. Also, Maxwell's equations can be manipulated to 

1For copper with u = 5.315 x 107 S/m at 60°C, this assumption is good for frequencies below 
approximately 1 x 1012 hertz. Above this frequency, the conductivity of copper becomes frequency 
dependent and the simple classical analysis of this report is not valid [7]. 
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yield a diffusion equation in terms of the magnetic field H; this derivation is detailed in 
Appendix B. The three diffusion equations are collected below. 

(4.8) 
(4.9) 

(4.10) 

What is important to see in the above equations is that, when there are no free charges 
in the conducting material, i.e., the volume charge density pin the material is zero, the 
diffusion equation is of exactly the same form for all three field quantities E, H and J. 
This does not, however, mean that the solutions are the same because different boundary 
conditions apply. 

For the infinite-current-sheet problem we are considering, we can make several sim
plifying assumptions. First, the spatial magnetic-field phasor H(x, y, z) is assumed to be 
a function of x only and to be directed in the z-direction. Likewise, the spatial current
density phasor J.(x, y, z) is assumed to be a function of x only and to be directed in the 
y-direction. We can write these mathematically as 

H(x,y,z) 

J.(x,y,z) 

Hz(x)a.z 

Jy(x)a.y 

(4.11) 

( 4.12) 

where ay and az are the unit vectors in the y and z directions respectively. Then 
the three dimensional diffusion equations given in (4.9), and (4.10) above become the 
one-dimensional partial differential equations, 

(4.13) 

(4.14) 

These are the equations that we now undertake to solve. 

4.1.3 Form of Solution of the Boundary Value Problem 

Before we continue with the mathematical development, it is useful to pause for a mo
ment and consider the type of solution we expect to find in the analysis that follows. 
Figure 4.1( a) shows as a vertically shaded plot a hypothetical distribution over the layer 
height of the phasor magnitude(rms value) of the magnetic field intensity in a current 
sheet similar to that in Fig. 3.15 that is subject to an arbitrary pair of cosinusoidal 
magnetic-field-intensity boundary conditions. What we seek to find in our analysis is 
an analytical expression for the distribution of the magnetic field-and for the related 
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CROSS SECTION OF CURRENT SHEET 

O hcu 
DISTRIBUTION OF (a) 
RMS VALUE OF Hz (x,t) 
OVER THE CURRENT-
SHEET CROSS 
SECTION 

Hz(X,l) 
TIME VARIATION OF MAGNETIC FIELD INTENSITY 1----, 

....----1 ON THE BOUNDARIES OF THE CURRENT SHEET 

(b) 

Figure 4.1: (a) Hypothetical distribution of the magnitude of the mag
netic-field-intensity phasor Hz(x) across a layer of height hcu· (b) 
The boundary conditions of the cosinusoidal waveforms Hz(O, t) = 
v'21Hz(O)lcos(wt + Oo) and Hz(hcu,t) = v'21Hz(hcu)lcos(wt + Oh ) are 

cu shown. 
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current-density distribution-in a winding layer based on the excitation frequency and 
on the values of the magnetic field intensity at the surfaces of the conductor. 

The boundary values of the magnetic field intensity play an important part in the 
derivations that follow, and we need to be somewhat explicit about the notation we use 
in describing these quantities. In part (a) of Fig. 4.1, we see a cross-sectional view of 
the current sheet. The arrows labeled Hz(O) and Hz(hcu) indicate the location of the 
magnetic-field-intensity phasor Hz ( x) at the boundaries x = 0 and x = hcu on the two 
sides of the current sheet. The succession of vertical lines in the plot of IHz(x)I versus 
x below the conductor cross section show how the rms value of a hypothetical phasor 
magnetic field might vary across the height of the layer. Part (b) of Fig. 4.1 shows 
in a perspective drawing two time axes on which the magnetic-field-intensity functions 
Hz(O, t) and Hz(hcu, t) at the boundaries of the layer are shown as cosinusoidally varying 
functions of time with arbitrary phase angles of IJo and IJhca. A repeat of the sketch of 
therms value of the magnetic-field-intensity function across the winding-layer height is 
shown at the origin of the waveform plots. Note that the peak values of the cosinusoidally 
varying time wave is y12 times the rms values of the waveforms. 

As explained in Section 1.2, we write the phasor boundary conditions in magnitude 
and phase notation as 

Hz(O)LIJo 

Hz(hcu)LIJh 
cu 

(4.15) 

(4.16) 

The angles IJo and IJh must be expressed in relation to some reference angle. We find 
cu 

that it is convenient for most purposes in this report to choose (Jh = 0 as the reference 
cu 

phase angle. The boundary conditions can be expressed as time functions by choosing a 
cosinusoidal reference and writing, 

Hz(O, t) 
Hz(hcu, t) 

V2 Hz(O) cos(wt + IJo) 

J2 Hz(hcu) cos(wt + IJh ) 
cu 

(4.17) 

(4.18) 

Since these boundary conditions are varying in time, the instantaneous magnetic-field
intensity profile across the current sheet is continually changing. It is important to point 
out, however, that it is therms value or magnitude of the current-den_sity phasor whose 
effect over the height of the current sheet determines the power loss in the windings. 
This presumably is the reason why the field and current-density distributions in a layer 
are commonly represented by plots of the phasor magnitude (rms value) of the magnetic 
field intensity IHz(x)I and the current density IJz(x)I at each point in the current sheet 
[10]. In one reference [10], the magnitude plots are accompanied by plots of the real and 
imaginary parts as well. 
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4.1.4 Differential Relationships between liz(x) and .J..,,(x) in the Cur-
rent Sheet 

With the above conceptual picture of the magnetic-field distribution across a wind
ing layer in mind, we return our attention to deriving an analytical expression for the 
magnetic-field-intensity and current-density distributions. We start this development by 
writing two of the field equations given in Appendix A in a form that is appropriate for 
the infinite-current-sheet problem considered here. In doing so, we obtain two equations 
that interrelate the magnetic field intensity and current density so that we can easily 
determine the expression for one given an expression for the other. In the next section, 
we first calculate an expression for the magnetic-field-intensity distribution, and then 
apply one of the relationships derived in this section to determine the corresponding 
expression for the current-density distribution. 

If we write th~ Maxwell field expression for Faraday's law from (A.1) as Vx E = - ~~ 
in terms of J and H by using the relations B = µ 0 H and J = uE, we get 

(4.19) 

Since we are interested only in the special case of sinusoidal steady-state excitation 
at an angular frequency w, we can remove the explicit time dependence from (4.19) by 
replacing J and H with their corresponding phasors. As shown in Appendix A, taking 
the time derivative of a real quantity is equivalent to multiplying its corresponding phasor 
by jw. Therefore, we can rewrite (4.19) in phasor form as 

V X J(x,y,z) = -jwµ 0 uH(x,y,z) (4.20) 

which relates the current-density phasor at any point in space to the magnetic-field
intensity phasor at that same point. Finally, using the definition of complex wave number 
k for a good conductor from ( 4.3) we have 

VxJ(x,y,z) = -k2H(x,y,z) (4.21) 

Similarly, we can write the Maxwell-field expression for Ampere's law given by (A.2) 

as V x H = J + 8J/ in the form 

(4.22) 

where the constitutive relations J = uE and D = cE have been used. In the sinusoidal 
steady-state case, we have 

V X H(x, y, z) = uE(x, y, z) + jwc0 E(x, y, z) (4.23) 

Now, if 

(4.24) 
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as is assumed in deriving the complex wave number 1£ for the good conductor in (4.3), 
then · 

U >> W€o 

and we can approximate ( 4.23) by 

VxH(x,y,z) ~ uE(x,y,z) 

~ J.(x, y, z) 

(4.25) 

(4.26) 

We show in Appendix C that for the one dimensional sinusoidal analysis where the 
spatial components of J. and H are functions only of x, (4.21) and (4.26) reduce to the 
one-dimensional equations, 

-1£2 Hz(x)az (4.27) 

(4.28) 

These two results are the one-dimensional field relations that we find useful in solving 
the diffusion-equation boundary-value problem for the infinite current sheet. Also, ( 4.27) 
and (4.28) point out that the current density and the magnetic field intensity are directly 
related and that we can always express one function in terms of the other. We make use 
of this fact in the following section where, after solving equation (4.13) for Hz(x), we 
obtain the equation for Ly(x) directly by applying the differential relationship ( 4.28). 

4.2 SOLUTION TO FIELD EQUATIONS FOR Hz(x) AND 
Jy(x) FOR AN INFINITE CURRENT SHEET 

Equation (4.13) is the one-dimensional diffusion equation written in terms of magnetic 
field intensity. The general solution of an equation of this form is 

H (x) = H J.x + H e-kx -z -1 -2 (4.29) 

where H 1 and H 2 are arbitrary quantities yet to be determined; H 1 and H 2 are written 
as underlined symbols to indicate that these quantities are in fact complex numbers rep
resenting phasor quantities. We use the boundary values of the magnetic field intensity, 
Hz(O) and Hz(hcu), to solve this differential equation as follows: 

1. Use the boundary values to write two independent expressions involving H 1 and 
H 2 • Evaluating ( 4.29) at x = 0 gives 

(4.30) 

and at x = hcu gives 

(4.31) 
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2. Solve simultaneously for H 1 and H 2 • Using (4.30) to substitute for H 2 in (4.31) 
· gives 

or, 

H1 = 
H (h ) - H (O)e-khcu -z cu -z (4.32) 

and a second use of ( 4.30) gives 

(4.33) 

3. Substitute (4.32) and (4.33) back into the general solution (4.29) to give 

4. Use the identity 

sinh0 
2 

(4.35) 

to rewrite equation (4.34) as 

(4.36) 

5. Calculate .ly(x)_ by applying the differential relationship (4.28) to our solution for 
Hz(x) in (4.36). We can rewrite equation(4.28) as 

Jy(x) = - a~:(x) (4.37) 

and then apply this result by differentiating ( 4.36) with respect to x to yield 

8.liz(x) k [ ] 
ax = sinhkhcu Hz(hcu) coshkx - Hz(O) coshk(hcu - x) (4.38) 
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so that 

(4.39) 

The above equation (4.39) for current density .l,,(x) and equation (4.36) for magnetic 
field intensity Hz(x) are the solutions we are seeking. Based only on the values of Hz(O) 

· and Hz(hcu), the thickness of the winding layer hcu, and the angular frequency w of 
the sinusoidal excitation, we can now calculate the value of the current density and the 
magnetic field intensity at any point within a winding layer. In addition, equations ( 4.36) 
and ( 4.39) highlight the fact that the distributions of the magnetic field intensity and 
the current density across the current sheet actually result from the superposition of 
two independent effects. That is, the two boundary magnetic fields Hz(O) and Hz(hcu) 
have mathematically equivalent effects on the distributions of Hz( x) and ..ly ( x), except, 
of course, that the magnetic field H z(O) dominates the total magnetic field in the region 
near the surface at x = 0 while the magnetic field Hz(hcu) dominates the total magnetic 
field in the region near the surface at x = hcu• This characteristic of the solutions is 
discussed in greater detail in Section 4.3.2 as we explore more thoroughly the meaning 
of equations (4.36) and (4.39). 

Before beginning such a detailed investigation, however, we first introduce some new 
notation that proves useful later in our analysis of energy storage and power loss. For 
convenience, we define a new variable X such that 

(4.40) 

which means that we always have X = hcu at the surface which has the larger of the two 
boundary magnetic fields, and X = 0 at the surface which has the smaller of the two 
boundary magnetic fields. In other words, regardless of the relative magnitudes of the 
boundary magnetic fields, we have now defined X such that 

(4.41) 

If we rewrite our solution for magn«;ltic field intensity (4.36) in terms of X, we obtain 

lL(X) = sinh~hcu[HzCX=hcu)sinhkX+JL(X=O)sinhk(hcu-x)] (4.42) 

and factoring out the term H z(X = hcu) gives 

( ) _ lf_z(X = hcu) [ . Jiz(X = 0) . ( ] 
Hz X - . h kh smh kX + H ( _ h ) smh k hcu - X) 

sin - cu -z X - cu 
(4.43) 
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The form of equation (4.43) can be simplified somewhat by introducing the boundary
condition ratio r_ = o: + j /3 as 

r. Hz(X = 0) 
(4.44) 

Hz(X= hcu) 

where 

0: Re(r_) (4.45) 

/3 hn(I) ( 4.46) 

and because of the way in which we define X, we know that 

o ::; III ::; 1 ( 4.47) 

for all possible choices of boundary magnetic fields, except of course for the trivial case 
where IHz(0)I and IHz(hcu)I are both equal to zero. In Section 4.1.3 above, we write 
Hz(0) and Hz(hcu) in magnitude and phase notation. We can use these expressions here 
to write 

0: 

/3 

Re(r_) = Re [ .liz(X = O) ] 
Hz(X = hcu) 

Re [ Hz(X=O)L0x=O l 
Hz(X = hcu)L0X=hcu 

Hz(X = 0) ( 
H ( - h ) cos Ox = o - Ox = h ) zX- cu cu 

hn(I) = hn [ liz(X = 0) ] 
Hz(X = hcu) 

Im [ Hz(X = O)L0x = o l 
Hz(X = hcu)L0x = hcu 

Hz(X = 0) . ( ) 
H ( - h ) sm 0x = 0 - 0x = h zX- cu cu 

(4.48) 

( 4.49) 

where 0x = o and 0x = hcu are understood to be the arguments of the magnetic field 
intensity phasor at X = 0 and X = hcu, respectively. Finally, we may rewrite ( 4.43) 
to obtain an expression for the magnetic field intensity phasor in terms of the real 
component o: and the imaginary component /3 of r_. 

(4.50) 
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The corresponding equation f(!r current density is 

where 

(-l)e kHz(X= hcu) [ ( . ) ( )] .ly(X)= . hkh coshkX- a.+J/3 coshkhcu-X 
Sill _ cu 

e= { 
1 if IHz(x = hcu)I ~ IHz(x = O)I 
0 if IHz(x = hcu)I < IHz(x = O)I 

Section 4.3 

(4.51) 

(4.52) 

so that the sign of equation (4.51) changes depending upon which case in equation (4.52) 
applies. 

Equation (4.51) is the phasor expression for the current density function in the infinite 
current sheet subject to the given boundary conditions, and is equivalent to the result 
given by Perry [13] in his equation (8b). In Chapter 7, Part II of this report, the 
equivalence of these two equations is shown. Furthermore, except for minor differences 
in symbols, equation ( 4.51) is identical to equation (A-15) in the appendix of the paper 
by Vandelac and Ziogas [19]. 

Equations (4.50) and (4.51) are key equations. They are important in their own right 
because they give the phasor expressions for the sinusoidal steady-state magnetic field 
intensity and the current-density distributions at an arbitrary height X in a current sheet 
of height hcu when a sinusoidal magnetic field of H z(X = 0) is present on one side and a 
field of H z(X = hcu) is on the other. They are also important because they lead, as shown 
in Section 4.5, to the calculation of energy storage and power loss within the winding 
structure of multi-winding transformers, which in turn can lead to the determination of 
the parameter values for an equivalent circuit, which is our ultimate goal. 

4.3 GRAPHICAL ILLUSTRATIONS OF Hz(x) AND Jy(x) 
IN AN INFINITE CURRENT SHEET 

Before continuing with the application of equations ( 4.50) and ( 4.51) to the winding 
space of a transformer, we first explore more thoroughly the meaning of the solutions for 
Hz(x) and J 11 (x) through an extensive array of illustrations. In this section, we define 
specific numerical examples involving both single-layer and four-layer structures and, 
using the equations developed in the above sections, we provide a large number of plots 
and data tables that illuminate many of the important aspects of the magnetic-field
intensity and current-density distributions. Although the forms of equations ( 4.50) and 
(4.51) are well-defined and appropriate for their application in Section 4.5, we find that 
equations (4.36) and (4.39) are, in their simplicity, better-suited for the purposes of this 
Section. As shown in the development of Section 4.2, equations (4.50) and (4.51) really 
contain the same information as (4.36) and (4.39), although (4.50) and (4.51) have a 
slightly more generalized form. 
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4.3.1 Plots of Phasor Magnitudes for a Single-Layer Example 

Plots of the magnitudes of the phasors of equations ( 4.36) and ( 4.39) reveal the impact 
that excitation frequency has on the current-de.nsity and magnetic-field-intensity distri
butions in a current sheet. Figure 4.2 shows the dramatic changes in magnitude of the 
phasor magnetic-field-intensity distribution over the height of a winding layer that take 
place as the excitation frequency increases. This plot represents the distribution of the 
magnitude IH z(x)I of the magnetic-field-intensity phasor across a single layer given a 
particular set of boundary conditions. Figure 4.3 shows the corresponding variation of 
the magnitude of the current-density phasor in the same layer. 

For ·this example, the magnetic-field-intensity boundary conditions are chosen as 
Hz(0) = 1L0° and Hz(hcu) = 2L0°. The plots in Figs. 4.2 and 4.3 represent the variation 
of IHz(x)I and IJy(x)I in an arbitrarily chosen winding layer of height hcu = 7.0 x 10-4 

meters over a frequency range of one kilohertz to one megahertz. At 1 kHz, the magnitude 
of the magnetic field intensity varies approximately linearly from one layer surface to the 
other, and the magnitude of the current density is approximately constant at a value of 
1.43 kA/m2 over the 0.7 mm height of the winding. At higher frequencies, the magnitude 
of the magnetic field intensity decreases substantially away from the layer boundaries, 
but remains constant over frequency at the two surfaces of the layer-as it must since 
the boundary conditions of the problem are the same for all these four frequencies. Also, 
the magnitude of the current density increases near the surfaces of the winding layer and 
drops to approximately zero in the interior regions. At 1 MHz, the magnitude of the 
current density at the surface where the magnetic-field-intensity magnitude is 1 A-t/m 
rises to 20.5 kA/m2, and it reaches 41.0 kA/m2 at the surface where the magnetic-field
intensity is 2 A-t/m in magnitude. 

4.3.2 Plots of Phasors for a Single-Layer Example 

In Section 4.3.1, we show the result of an example involving a single layer for which we 
plot the magnitudes of the magnetic-field-intensity and current-density phasors found 
in equations {4.36) and {4.39). These plots are shown in Figs. 4.2 and 4.3 for a range 
of excitation frequencies. In interpreting these two figures, however, we must be care
ful to remember that they are only magnitude plots, and therefore do not contain any 
information on the phase angles that are associated with HA x) and .l.y ( x). One way 
to incorporate this information is to accompany each of the magnitude plots with a 
corresponding phase plot, or similarly, with plots of the corresponding real and imagi
nary parts of the phasors. Magnitude plots such as those in Figs. 4.2 and 4.3, together 
with plots of the corresponding real and imaginary parts of the phasors are found in 
[9]. Although this approach does illustrate all of the information contained in the pha
sors of equations ( 4.36) and ( 4.39), it is generally quite difficult to gain physical insight 
into these solutions when the magnitude and phase information appears in two or more 
separate plots. To remedy this, we might wish to show the phasors of equations ( 4.36) 
and (4.39) at equally spaced intervals across the layer. Such a representation, however, 
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Magnitude of ~z(x) across a Single Layer 
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Figure 4.2: Plot of the magnitude of the magnetic-field-intensity phasor 
Hz(x) in an infinite current sheet at 1 kHz, 10 kHz, 100 kHz, and 1 MHz. 
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Magnitude of ly(x) across a Single Layer 

lly(x)I [x104 Alm2 ) 
5 

4 

3 

2 \ 
\ 

\ 1 MHz 

I 
I 

71 

--I 

I 
i 
i 
i 
i 

i 
I 

\/ / / 

\ 
\ ·, 

.._ .._ .._ ·,. _.,,_ 
':::..-:---_ 

-------- -----=--
1 kHz 

I ,,,- / 
/ ,,,,,,,..,,,,,,,.. 

100 kHz _,,._.i/ 
_,,. I 

\ __ ........... .---~,,/ 10 kHz 
...... / ,. ...... . ~ -- -----~-.:'------ ---------

0 -----

0 2 4 6 
Layer Height (x) [xl0- 4 m) 

Figure 4.3: Plot of the magnitude of the current-density phasor .,l_
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(x) in an 

infinite current sheet at excitation frequencies of l kHz, 10 kHz, 100 kHz, 
and 1 MHz. 
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needs to be three-dimensional, since each phasor has two components ( real and imagi
nary) and the location of each phasor across the layer height requires a third dimension. 
Although a geometrical model is the most appropriate solution, we can also represent 
this information in an isometric plot. · 

As an introduction to the concept of plotting phasors in three dimensions, we first look 
at a simple example. The upper left corner of Fig. 4.4 shows for reference a right-hand 
three-dimensional coordinate system. The axes of this coordinate system are labeled 
x, Re, and Im, where x stands for distance, Re for Real, and Im for Imaginary. Note 
that this coordinate system is different from the one introduced in Fig. 3.15 of Section 
3.3.1 in that the Re-axis and Im-axis of Figure 4.4 define, respectively, the real and 
imaginary parts of some phasor quantity, whereas the y-axis and z-axis of Fig. 3.15 define, 
respectively, the geometrical dimensions of layer depth and layer breadth. However, 
the x-axis of Fig. 4.4 does correspond to the x-axis of Figure 3.15 in that they both 
define the geometrical dimension of layer height. On the larger set of axes in Fig. 4.4, 
a hypothetical phasor distribution of current density l..y ( x) is plotted at four equally 
spaced points across a winding layer. The real part of J Y ( x) is plotted on the horizontal 
Re-axis; the imaginary part is plotted on the vertical Im-axis, and the distance through 
the layer is plotted on the horizontal x-axis that is coming out of the page to the left. 
Note that the positive half of each axis is drawn with a solid line, while the negative 
half is drawn with a dashed line. The current density phasors are drawn parallel to the 
plane of Re versus Im at evenly spaced points across the layer (x-axis). Each phasor has 
its tail on the x-axis, and its head at a point corresponding to the real and imaginary 
parts. The arrow head usually drawn at the head of a phasor is omitted in this report to 
avoid unnecessary cluttering of subsequent drawings. A phasor with zero phase angle (no 
imaginary part) would be shown parallel to the Re-axis, and a phasor with a 90° phase 
angle would be shown parallel to the Im-axis. The dotted lines that form parallelograms 
around each phasor in Fig. 4.4 are drawn so that the relative contributions of the real and 
imaginary parts can be seen more easily. Note that the table beneath the plot in Fig. 4.4 
shows the value of the current-density phasor, magnitude and phase angle, together with 
the real and imaginary components, at each of the four points across the layer height. 

We can obtain additional insight into how the current density varies with time over 
the height of the current sheet if we imagine all of the phasors to be rotating at an 
angular frequency 2,r / in a counterclockwise direction around the x-axis, so that the 
actual time-varying distribution of the current density is proportional2 to the projections 
of the phasors onto the plane of x versus Re. Illustrations of the results of such a process 
are shown later in this section. 

In Section 4.3.1 we plot the magnitudes of the phasors Hz(x) and I..y(x) for a par
ticular numerical example in Figs 4.2 and 4.3. We now return to this same numerical 
example, but instead of plotting the magnitudes of the phasors, we now plot the phasors 

2 We have defined the magnitude of the phasor as the rms value of the actual sinusoid. Therefore, the 
actual sinusoidal waveform can be recovered from the rotating phasor by multiplying the real projection 
of the phasor by ,/i 
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Example of ly(x) Represented in Isometric Plot 

Imaginary 

X IL11 ( X) I I .,l11 (x) Re[.l11 (x)J 
X 10-4m A/m2 Degrees A/m2 

0 1.0 45° 0.707 
1 2.0 -30° 1.732 
2 2.0 -120° -1.000 
3 1.0 -45° 0.707 
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Figure 4.4: Plot of hypothetical current-density phasor .l
11
(x) at four points 

across the winding layer. 
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themselves. Figure 4.5 consists of plots of these Hz ( x) and J 11 ( x) phasors as a function of 
layer height x at 1 kHz. The magnetic-field-intensity phasors at the boundaries are again 
given as Hz(O) = lL0° and Hz(hcu) = 2L0°, and the height of the copper current sheet 
is given as hcu = 7.0 x 10-4 m. Our arbitrary choice of zero phase angle for the phasors 
JL(O) and of JL(hcu) simply means that the magnetic field at x = 0 is oscillating in 
phase with the field at x = hcu• In addition to the plots of the magnetic-field-intensity 
and current-density phasors, Fig. 4.5 also contains a data table that provides the values 
for the Hz( x) and J 

11 
( x) phasors at eight equally spaced points across the layer height. 

The upper set of three-dimensional axes in Fig. 4.5 shows the variation of the 
magnetic-field-intensity phasors across the height of the layer calculated using equa
tion (4.36). Note that the heads of the phasors are all connected with a single, solid 
line to enhance the appearance of a surface. The plot and associated tabular values of 
Hz(x) in Fig. 4.5 reveals that the magnitude of the magnetic field at 1 kHz varies linearly 
within two significant figures across the layer. Also, since none of the phasors differ by 
more than 2° from being parallel to the real axis, we know that the magnetic field at 
every point across the layer must be oscillating very nearly in phase with the magnetic 
field at the surfaces. This simple linear distribution of magnetic field intensity is similar 
to the result obtained in Section 3.1.2.1 for the case of a uniform de current except, of 
course, that the distribution obtained from the phasors in Fig. 4.5 is varying sinusoidally 
with time. 

The current-density phasors associated with these magnetic-field-intensity phasors 
have been calculated using equation ( 4.39) and the results are plotted on the lower set 
of axes in Fig. 4.5. Note that on this plot the scaling on the real and imaginary axes has 
been changed from the upper plot to accommodate the current-density phasors, while 
the scaling on the x-axis is the same as that on the upper set of axes. The plot of the 
current-density phasors and the table of values in Fig. 4.5 reveal that the magnitude of 
.l11 (x) remains essentially constant across the layer while the phase angle varies by less 
than ±10°. Therefore, we conclude that the actual current density is almost uniform 
across the layer and varies sinusoidally with time. Once again, this result agrees rather 
closely with the de field calculation of Section 3.1.2.1 which shows that a uniform current 
is associated with a linearly distributed magnetic field intensity. 

We mention above that the actual distributions of the magnetic field intensity and 
current density are proportional to the real projections of the phasor distributions in 
Fig. 4.5. We can, therefore, see how these distributions vary with time by imagining 
that all of the phasors are rotating in a counterclockwise direction about the x-axis with 
an angular frequency w. This principle can be illustrated by looking at a time sequence of 
such real projections. Figure 4.6, which is a companion piece to Fig. 4.5, shows the actual 
distribution of current density across the winding layer for an excitation frequency of 
1 kHz at various points in time throughout one cycle. Each small plot is labeled with 
an angle measure, corresponding to the angular measure of time wt. The plots divide 
a single period of oscillation into twelve equal intervals, and they are ordered in time 
from top to bottom down the left column, and then down the right. From Figure 4.6, 

--- - -------- ---- - --- - -- -
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H2 (x) and Jy(x) at 1 kHz 
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2 l.29L-l.34° 0.143Ll75.99° 
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Figure 4.5: Plots of the magnetic-field-intensity phasor Hz(x) and the cur- • 
rent-density phasor J 11 (x) at an excitation frequency of 1 kHz. 
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Time Variation of Actual Current Density at 1 kHz 
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Figure 4.6: Plots of the actual current-density distribution at twelve different 
instants of wt spaced evenly throughout a single cycle of oscillation at 1 kHz. 
The progression advances from top to bottom down the left column and then 
down the right. 
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we can see that the current density is nearly uniform across the layer at every point in 
time throughout a single cycle. Since we take the real, or cosinusoidal part of the phasor 
1.y(x) to be proportional to the actual, time-varying current density, we would expect 
that for a perfectly uniformly distributed current density there would be zero current at 
all points across the winding layer at times corresponding to wt = goo and wt = 270°. 
Accordingly, Fig. 4.6 reveals that there is very little current density in the winding layer 
at these times. Note that the small amount of current density that is evident at the 
time corresponding to wt = 90° is a result of the difference in phase between the current 
density at x = 0 and at x = hcu• From the table of Fig. 4.5, we can see that the actual 
current density at x = 0 is lagging in phase 17.52° behind the current density at x = hcu• 

Nevertheless, the current density that does appear at the time corresponding to wt = goo 
in Fig. 4.6 is, at all points across the height of the layer, less than one-sixth of the current 
density that appears at the time corr.esponding to wt = 0°. In general, the distribution of 
current density at this frequency differs from a perfectly uniform distribution by no more 
than 6% at all points across the height of the layer. Consequently, we can conclude from 
Figs. 4.5 and 4.6 that skin effect does not have a significant influence on the distributions 
of magnetic field intensity and current density when the excitation frequency is low or, 
more specifically, when the skin depth is large with respect to the layer height. 

Figure 4. 7 contains plots of Hz ( x) and 1.y ( x) for an excitation frequency of 10 kHz 
and Fig. 4.8 shows the corresponding time variation of the actual current density. The 
boundary conditions and layer height are the same as those used in Fig. 4.5. Throughout 
this section, we continue to use the example that is introduced in Section 4.3.1 and only 
the frequency is varied. The plot of the magnetic-field-intensity phasors and the table of 
values in Fig. 4. 7 show that the magnitudes of the phasors no longer vary linearly across 
the layer, and that the phasors near the center of the layer are lagging by almost 15° 
behind those which have been established at the surfaces. Likewise, the current-density 
phasors plotted on the lower set of axes in Fig. 4. 7 are also beginning to show the influence 
of skin effect. There is now a noticeable increase in the magnitude of the current-density 
phasors near the surfaces of the layer, by about 50% over that at 1 kHz at x = 0 and 
by about 100% at x = hcu, while the magnitude near the center has decreased slightly 
below that at 1 kHz. More importantly, this plot reveals that there is now a substantial 
phase difference of 113° between the current-density phasors at x = 0 and at x = hcu• 
It appears as though the small ribbon of current density that is seen in the lower set of 
axes in Fig. 4.5 has been twisted and widened at the ends to give us the distribution 
of Fig. 4.7. As a result of this phase difference, there is now an appreciable portion of 
a cycle during which the actual current flows in an opposite direction on one side of 
the current sheet than it does on the other. This can be seen more clearly in Fig. 4.8, 
which shows the actual current-density distribution at twelve instants of time during a 
single cycle of oscillation, at an excitation frequency of 10 kHz. This figure reveals, for 
example, that during the interval 60°~ wt ~ 150° the current near the surface at x = 0 
is flowing in the -y-direction, while the current near the surface at x = hcu is flowing in 
the +y-direction. 
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H2 (x) and Jy(x) at 10 kHz 
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Figure 4.7: Plots of the magnetic-field-intensity phasor Hz(x) and the cur
rent-density phasor ,l

11
(x) at an excitation frequency of 10 kHz. 
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Time Variation of Actual Current Density at 10 kHz 
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Figure 4.8: Plots of the actual current-density distribution at twelve different 
instants of wt spaced evenly throughout a single cycle of oscillation at 10 kHz. 
The progression advances from top to bottom down the left column and then 
down the right. 
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The H z(x) and J 
11
(x) phasers for the case of 100-kHz excitation frequency are plot

ted in Fig. 4.9, and the corresponding variation of actual current density is plotted in 
Figure 4.10. The variation of the magnetic-field-intensity phasers on the upper set of 
axes in Fig. 4.9 reveals the substantial impact of skin effect on this example layer at this 
frequency. The phasers near the center of the layer are now lagging in phase by more 
than 90° with respect to the phasers at the surfaces. There is also an attenuation in 
the magnitude of the J;L(x) phasers away from the surfaces of about 40% with respect 
to the two lower frequency cases. This is due to the magnetic field's diminishing abil
ity to penetrate the conducting layer at higher frequencies. From the development of 
Appendix D, we know that this attenuation in the magnetic field is a result of energy 
being transferred (via the electric field) into the m~dium in the form of increased current 
density. Accordingly, we _see that the current density phasers of Fig. 4.9 are, in fact, 
substantially larger in magnitude near the surfaces of the layer, more than 5 times that 
for 1 kHz at x = 0 and more than 9 times at x = hcu• Moreover, since the phase angles 
of the current-density phasers at x = 0 and at x = hcu differ by 180°, Fig. 4.9 suggests 
that at every instant of time throughout a cycle the actual current will be flowing in 
opposite directions at x = 0 and at x = hcu• This fact is evident from Fig. 4.10, which 
shows the time variation of the actual current density distribution at 100 kHz. Note that 
the current-density distribution at each point in time is approximately odd-symmetric 
about the center of the layer, and is slightly uneven only because the magnitude of the 
magnetic field intensity is greater at x = hcu than it is ~t x = 0. Thus, there is an imbal
ance of current in the +y- and -y-directions at each point in time which results in a net 
instantaneous current flow in either the +y- or the -y-direction. An interesting effect is 
seen in Fig. 4.10 at times corresponding to wt = 60° and wt = 240°. At 60°, the current 
at x = 0 is flowing in the -y-direction; in the neighborhood of x = 1 x 10-4, the current 
is flowing in the +y-direction; then, for x between 2.6 x 10-4 and 6.3 x 10-4 , the current 
has reversed again and is flowing in the -y-direction; finally, from x = 6.4 x 10-4 to 
x = hcu the current is again flowing in the +y-direction. In other words, at this instant 
in time, the current undergoes three reversals in direction across the layer height from 
x = 0 to x = hcu• At wt = 240°, we see a similar pattern since the distribution of the 
actual current density is a mirror image of that for wt = 60° about the x vs Im-plane. 

At this point we should emphasize that the increase in surface current densities that 
appears in Figs. 4.7 and 4.9 in no way suggests that there is a "larger current" in the 
winding layer than is present in the lowest frequency case of Fig 4.5. We can see this by 
taking the actual current density at any instant of time in either Fig. 4.8 or Fig. 4.10 and 
spatially averaging it across the winding layer to obtain the net, instantaneous current 
density. In each case, the net or average current density that we obtain is exactly the 
same as the almost uniform current density of Fig. 4.6 for the same instant in time. This 
is expected since we force the same net sinusoidal current into the layer at all of these 
four frequencies. 

In Section 4.2, immediately following the derivation of equations ( 4.36) and ( 4.39), 
we make the claim that the distribution of the magnetic field intensity and current 
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Hz(X) and Jy(X) at 100 kHz 
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Figure 4.9: Plots of the magnetic-field-intensity phasor H z(x) and the cur
rent-density phasor J 11 (x) at an excitation frequency of 100 kHz. 
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Variation of Actual Current Density at 100 kHz 
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Figure 4.10: Plots of the actual current-density distribution at twelve dif
ferent instants of wt spaced evenly throughout a single cycle of oscillation 
at 100 kHz. The progression advances from top to bottom down the left 
column and then down the right. 
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density can be thought of as resulting from the superposition of the two independently 
established boundary magnetic fields-Hz(0) and Hz(hcu). We can graphically illustrate 
this fact for the case of equation (4.36) by replotting the Hz(x) distribution of Fig. 4.9 
with the individual contributions of each boundary magnetic field explicitly shown. This 
is done in Fig. 4.11, which shows the two independent sets of magnetic-field-intensity 
phasors, as well as the envelope of the sum, which corresponds to the envelope seen in 
Fig. 4.9. The first distribution of phasors is marked by a dashed-line envelope, and it has 
the boundary conditions Hz(O) = 1L0° and Hz(hcu) = 0L0°. The second distribution 
of phasors has a solid line envelope and ha~ the boundary conditions H z(O) = 0L0° and 
Hz( hcu) = 2L0°. The envelope of the sum of these two phasor distributions at every 
point across the layer is represented by the dotted line. Note that near the surfaces of 
the layer the sum of the distributions more closely follows the distribution that has a 
non-zero boundary condition at that surface. Thus, there is a tendency for each of the 
two magnetic fields to exert a dominant influence in the interior of the layer near the 
surface at which it has a non-zero boundary value. 

Alternatively, we can consider the distribution of the magnetic field intensity and 
current density to be a physical superposition of two transverse electromagnetic waves, 
as discussed in Appendix D. By this approach, we are able to explain in detail the 
distributions as they vary with frequency. 

Figure 4.12 shows the distribution of H z(x) and J 
11
(x) at a 1-MHz excitation fre

quency, and Fig. 4.13 shows the corresponding time variation of the actual current
density distribution at this frequency. On the upper set of axes in Fig. 4.12, we see that 
the magnitude I Hz( x) I of the magnetic field intensity drops off rapidly away from the 
surfaces of the layer, and the phase angle of Hz( x) near the center of the layer is now 
lagging as much as 270° behind the phase angle of Hz( x) at the surfaces. Once again, 
this sharp attenuation of the magnetic field intensity is associated with an increase in 
surface current density. The plot of l._

11 
( x) in Fig. 4.12 shows that the magnitude of the 

current-density phasors has now dramatically increased near the surfaces by more than 
14 times the 1 kHz value at x = 0 and more than 28 times at x = hcu• Near the center 
of the layer, the magnitude of the current-density phasors has attenuated substantially 
to only 20% of the 1 kHz value. Note that the current-density phasors between x = 0 
and x ~ 2 x 10-4 are all leading their corresponding magnetic-field-intensity phasors 
over this same region by a phase angle of approximately 45°. Likewise, the current
density phasors between x ~ 5 x 10-4 and x = hcu are leading their corresponding 
magnetic-field-intensity phasors by approximately 225°. Also, the phase angle of Hz(x) 
over these same regions exhibits even symmetry about the center of the layer, so that 
for 0~ x~ 2 x 10-4 we have 

(4.53) 

where LJL(x) denotes the phase angle of the phasor quantity Hz(x). As a result of 
this symmetry and the phase relationship between l._

11 
( x) and Hz( x), the current density 
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Superposition of Boundary H-Fields at 100 kHz 
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Figure 4.11: Superposition of two magnetic-field-intensity phasor distribu
tions at 100 kHz showing the individual contributions from the magnetic 
fields established at each of the surfaces. 
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J
11
(x) for 0~ x~ 2 x 10-4 must also obey 

LJ 11 (x) ~ LJ 11 (hcu - x) - 180° (4.54) 

This means that the current-density phasors at a given distance from one surface of the 
layer are approximately 180° out of phase with the current-density phasors at the same 
distance from the other surface. Therefore, at every time instant throughout a single 
cycle, there must be actual currents that flow in opposite directions near the two surfaces 
of the layer. Figure 4.13 reveals this 180° phase difference in the current density near 
the two surfaces of the winding layer. Note that the actual current-density distribution 
at each point in time is nearly odd symmetric about the center of the layer and the 
imbalance in the symmetry corresponds to the net instantaneous current flowing in the 
layer. At frequencies and layer heights where the skin depth is even smaller with respect 
to hcu than it is in Figs. 4.12 and 4.13, the relationship given by (4.54) holds over an 
increasingly large interval, and in the limit is true for O ~ x $; hcu/2. 

It is also interesting to observe in Fig. 4.13 that at any instant in time, as we move 
across the winding layer from x = 0 to x = hcu, we see that the current flow undergoes 
several changes in direction. This dispels the notion that skin-effect currents are simply 
surface currents that travel in one direction on one side of the winding layer and in the 
opposite direction on the other side of the winding layer. For example, at time wt= 60° 
in Fig. 4.13, the current on the surface of the layer at x = hcu is flowing in the +y
direction, while the current just beneath this surface is flowing in the -y-direction and 
is comparable in magnitude to the current at the surface, so that the magnitude of the 
current density at x = 6.21 x 10-4 is 95% of that at x = hcu• In fact, there are a total 
of five reversals of direction in the current density across the layer height from x = 0 to 
x = hcu, although this is difficult to see given the scale used in Fig. 4.13. 

From the development of Appendix D, we understand that the current density ac
tually distributes itself according to the envelope of the electric-field component of two 
superposed electromagnetic waves. As each electromagnetic wave travels into the layer 
from one of the two surfaces, its electric field oscillates as a damped sinusoid, generating 
a current at each point that is proportional to the electric field at that same point. When 
the skin depth is small with respect to layer height (8 ~ O.lhcu in Fig. 4.13), then there 
is very little interference between the two waves as they travel towards the center from 
opposite sides, and so the sinusoidal nature of the electric fields becomes apparent in the 
behavior of the current-density distribution. Therefore, it is this wavelike behavior which 
is responsible for the large number of direction changes in the actual current density at 
any instant in time. 

Throughout this document, we have emphasized the fact that the importance of skin 
effect is in no way restricted to high-frequency applications. Indeed, skin effect can have 
a significant impact on the power-loss and energy-storage characteristics at what might 
be considered relatively low frequencies. Figure 4.14 dramatizes this fact. The example 
illustrated in this figure is in every way the same as the 1-kHz example of Figure 4.5 
except one-that the copper height is now increased to hcu = 10 x 10-3 m, or by a factor 
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Hz(X) and Jy(X) at 1 MHz 
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Figure 4.12: Plots of the magnetic field intensity phasor H z(x) and the 
current density phasor .,l11 (x) at an excitation frequency of 1 MHz. 
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Time Variation of Actual Current Density at 1 MHz 
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Figure 4.13: Plots of the actual current-density distribution at twelve dif
ferent times (wt) spaced evenly throughout a single cycle of oscillation at 
1 MHz. The progression advances from top to bottom and then from left to 
right. 
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Figure 4.14: Plots of the magnetic field intensity phasor Hz(x) and the 
current density phasor .,L
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thickness of the copper layer is increased to hcu = 10 x 10-3 m. 
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of about 14. The scale on the plot of J 
11
(x) in Fig. 4.14 indicates that the current densities 

experienced in the thicker layer are generally smaller than those of Fig. 4.5. This is the 
case since the same magnetic-field boundary conditions are applied to both layers, so 
that the same net instantaneous current that flows in the thinner layer of Fig. 4.5 now 
flows through a larger volume in the layer of Fig. 4.14. Note that the magnitude of 
Hz(x) near the center of the layer in Fig. 4.14 is now decreased substantially to only 
20% of the value at the center of the layer in Fig. 4.5. Likewise, the magnitude of J 11 ( x) 
in Fig. 4.14 is larger near the surfaces of the layer than it is at the center by 10 times 
at x = 0 and 20 times at x = hcu• Also, since the change in the phase angle of J 11 (x) is 
182° from one surface to the other, we now expect that for almost all instants of time 
within· a cycle, the current will flow in opposite directions near x = 0 and x = hcu• 

In comparing Figs. 4.5 and 4.14, one might be lead to wonder if there is some solid 
criteria by which to judge whether or not skin effect will be a significant factor at a 
particular excitation frequency, given that the geometry remains fixed. We can define 
such a critical frequency as one which results in a skin depth that exactly equals the 
height of the copper. Using the good-conductor definition of skin depth from ( 4. 7) 

(4.55) 

we can write 

(4.56) 

or 
2 

We= 21l"lc = 2 (4.57) 
hcu µou 

where We is the critical frequency. If we are well below this frequency, then the skin depth 
will be too large to affect significantly the field and current distributions. However, if 
we are near or above this critical frequency, then skin effect will generally be important. 
We can demonstrate this principle in relation to the above examples. For the example 
illustrated in Figs. 4.5 through 4.13, we have heu = 7 X 10-4, µo = 4,r X 10-1 , and 
u = 5.315 X 107 so that the critical frequency We = 6.11 X 104 rad/s, or le = 9.73 kHz. 
Accordingly, we conclude from Figs. 4.5 through 4.13 that at 1 kHz there is very little 
effect on the field and current distributions, whereas for frequencies well above 10 kHz 
there is a significant effect. Similarly, for the thick layer example of Fig. 4.14, we find that 
We = 299 rad/s or le = 47.7 Hz and therefore expect that at 1 kHz there would indeed 
be a substantial impact of skin effect on the magnetic-field-intensity and current-density 
distributions. 

We can further utilize the concept of critical frequency to examine the behavior of 
equations (4.36) and (4.39) in the limit of low frequency, where the excitation frequency 
is very much less than the critical frequency, or 

2 
W << We = -=-2-

hcu µou 
(4.58) 
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Since (4.36) and (4.39) are in terms of complex wave number k instead of the frequency 
w, we first rewrite the inequality of (4.58) in terms of the complex wave number. From 
(4.5) of Section 4.1.2 we can write 

(4.59) 

and replacing the w under the radical in (4.59) with the right-hand side of (4.58) we 
obtain 

lkl « 
y'2 

(4.60) 
hcu 

lklhcu « v'2 (4.61) 

or, approximately 

lklhcu « 1 (4.62) 

Furthermore, since 0 ~ (hcu - x) ~ hcu and 0 ~ x ~ hcu, we also know that 

lkl(hcu - x) « 1 (4.63) 

and 

lklx « 1 (4.64) 

so that the inequalities of (4.62), (4.63) and (4.64) are all implied by (4.58). Expanding 
now the sinh terms in ( 4.36) yields 

(4.65) 

The Taylor series approximation for # is given by 

for IYI « 1 (4.66) 

where y is any complex number. Using ( 4.62), ( 4.63) and ( 4.64) together with the approx
imation of (4.66), we can replace each of the exponentials in (4.65) with its corresponding 
linear term 

kh ~ kh {H z(hcu) [ 1 + kx - 1 + kx] 1+_ cu 1+_ cu 

+ Hz(0) [ 1 + khcu - kx - 1 + khcu - kx]} 

2k~cu { Hz(hcu) [2kx] + Hz(0) [2khcu - 2kx]} 
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After making cancellations and factoring, we obtain 

(4.67) 

In a similar manner, we can apply the Taylor series approximation to the expression for 
the current-density phasor J y ( x) ( 4.39) and obtain 

J (x) = J = liz(O) - llz(hcu) 
-y -Y hcu ( 4.68) 

Equations (4.67) and (4.68) are the low-frequency forms for the magnetic-field-intensity 
and current-density distributions across the height of a layer. Naturally, the results 
obtained in ( 4.67) and ( 4.68) could have been obtained equally well by a direct applica
tion of Ampere's law assuming de-excitation current. Note that the low-fre.quency form 
( 4.67) of Hz( x) is the equation of a straight line corresponding to the linear distribu
tion of Hz(x), while the low-frequency form (4.68) of Jy(x) is independent of x. This 
corresponds to the result obtained for the de-case of Section 3.1.2 as well as the low
frequency-case of Fig. 4.5. Equation ( 4.68) is also useful in that it provides a value for the 
average current-density phasor J y across the height of a layer, given the magnetic-field 
boundary conditions for that layer. 

4.4 GRAPHICAL ILLUSTRATIONS OF Hz(x) AND Jy(x) 
IN AN IDEALIZED TRANSFORMER 

4.4.1 Plots of Phasor Magnitudes Across Four Layers 

The reader will recall that in Section 3.1.2 we introduce the concept of de straight-line 
magnetic-field-intensity diagrams that are used to determine the values of magnetic field 
that exist at the boundaries of each winding layer in a two-layer infinite solenoid. In 
Section 4.1, we demonstrate that these boundary values are sufficient information to 
solve for both the current density and the magnetic-field intensity in the interior of an 
infinite current sheet. We now take the results of our infinite-current-sheet analysis and 
apply them to a four-layer infinite solenoid similar to the two-layer one developed in 
Section 3.1.2. 

Figure 4.15 shows a four-layer solenoid in which the inner three layers are part 
of one winding and the outermost layer is a different winding. Each winding layer 
in the structure has a height hcu of 7 .0 X 10-4 m, the same as that of the single 
layer of Figs. 4.2 and 4.3. Each layer is separated by an air gap of 2 x 10-4 m, 
and the magnetic field boundary conditions for the four layers are given by Hz(O) = 
OL0°, Hz(1 x 10-4 ) = Hz(9 x 10-4 ) = lL0°, Hz{l6 x 10-4 ) = Hz{18 x 10-4 ) = 2L0°, 
Hz(25 x 10-4 ) = Hz(21 x 10-4 ) = 3L0°, and Hz(34 x 10-4) = OL0°. Following the 
pattern used in Figs. 4.2 and 4.3, Figs. 4.16 and 4.17 show plots of the magnitude of 
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Figure 4.15: Structure of a four-layer solenoid. The three inner layers are 
all of one winding and the outer layer is of a different winding. The outer 
winding carries a current equal to the sum of the currents in the other layers. 
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Magnitude of H2 (x) across a Four-Layer Solenoid 

IHz(x)I [A-t/m] 

4 

3 

2 

0 

I 
\ 

----· 

~ 
ii 
ii 

. ii 
j\ 
i I 
. I 
! I 
! I 
! I 
! \ 
I \ 
I \ 
I \ 
I \ 
\ \ 
I \ 

~ \ 
I \. 

\ ' 
' 

\. 

93 

0 9 18 27 36 

-4 
Layer Height (x) [xlO m] 

Figure 4.16: The magnitude of the magnetic-field-intensity phasor distribu
tion for the solenoid shown in Fig. 4.15. 
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Magnitude of Jy(x) across a Four-Layer Solenoid 
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the magnetic-field-intensity and current-density distributions, respectively, for the dif
ferent layers of this four-layer solenoid. These plots are similar to those of Figs. 4.2 
and 4.3; the magnetic-field-intensity boundary conditions are chosen so that each of the 
inner winding layers contributes one unit to the net magnetic field and the outer layer 
contributes a total of three units. Note that since all of the magnetic-field boundary 
conditions are in phase, we obtain from equation (4.49) that the value of (3 for each layer 
is zero, just as it is for the single layer of Sections 4.3.1 and 4.3.2. Also, we see from the 
limiting condition of low frequency given by (4.68) that, for any given layer, the phase 
angle of the net current-density phasor is either 0° or 180°, depending upon whether the 
magnitude of the magnetic field intensity is greater at x = 0 or at x = hcu• That is, the 
net current in each of the winding layers is either in phase or 180° out of phase with 
the fields at the layer surfaces. In the plots of Figs. 4.16 and 4.17, the inner three layers 
carry a net current of one unit and the outer layer carries a net three units of current. 

The four curves that are plotted in each figure show the field distributions for four 
different excitation frequencies ranging from one kilohertz to one megahertz. The solid
line in each figure shows the field distribution for the lowest-frequency of excitation; 
these solid-line plots are close to the "straight-line" field-intensity diagrams that were 
used earlier in Section 3.1.2 to determine the boundary conditions for the various lay
ers. At high frequencies, we see that the magnitudes of the magnetic field intensity and 
current density both decrease sharply in the interior of the layers. The boundary con
ditions are set for the magnetic field intensity; therefore, the surface values of IHz(x)I 
remain constant, while the magnitude of the current density increases dramatically on 
the winding-layer surfaces. By observing only the magnitudes of the current-density dis
tributions in Fig. 4.17, it is not at all apparent that the net current in each of the three 
inner windings is the same for each of the four frequencies shown. For this reason, we 
now look at the magnetic-field-intensity and current-density phasor distributions across 
this same four-layer solenoid in a series of isometric plots. 

4.4.2 Plots of Phasors Across Four Layers 

In the immediately preceding section, we introduce an example of a four-layer solenoid 
that is illustrated in Fig. 4.15. Based upon the assumption that the four layers of this 
solenoid can be modeled by four infinite current sheets, we then provide plots of the 
magnitude of Hz(x) and J 11 (x) in Figs. 4.16 and 4.17: It is important to realize that 
the four-layer infinite solenoid of Fig. 4.15 is not a transformer per se, since there is no 
magnetic core. In other words, there is nothing inherent in this structure that places any 
constraints whatever on the magnetic fields in any of the three inter-layer gaps, or in the 
center of the solenoid. Therefore, we intentionally choose values for these magnetic fields 
so that our example four-layer solenoid has the appearance of a transformer with a core 
material of infinite permeability. That is, we choose the values of the magnetic fields in 
the air spaces so that the total number of ampere-turns across the four layers is zero. In 
Section 4.3.2, we use isometric plots to illustrate the complete Hz(x) and .£

11
(x) phasors 

for the single-layer example originally introduced in Section 4.3.1. In the same way, we 
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now wish to show the complete phasors across all four layers for the infinite solenoid 
example that is introduced in Section 4.4.1. Figures 4.18 through 4.21 contain plots of 
the magnetic-field-intensity and current-density phasors for this four-layer example at 
the same four frequencies that are used in Figs. 4.16 and 4.17 where only the magnitudes 
of the phasors are plotted. 

Figure 4.18 shows the variation of the Hz ( x) and the J 11 ( x) phasors across four layers 
at an excitation frequency of 1 kHz, and Table 4.1 contains an illustrative set of data 
points corresponding to the two plots in Fig. 4.18. The magnetic-field-intensity phasor 
distribution is plotted on the upper set of axes in Figure 4.18, while the current-density 
phasor distribution is plotted on the lower set of axes. The upper set of axes in Fig. 4.18 
and Table 4.1 reveal that, although there is some small variation in the phase of Hz( x) 
(less than 2°), the magnitude of Hz(x) varies essentially linearly across each of the 
four layers. Note that to avoid unnecessary cluttering of the drawings, there are no 
magnetic-field-intensity phasors plotted in the three interlayer gaps; the solid line that 
would be connecting their tips is shown, however. This is because we have assumed that 
the magnetic field intensity in each interlayer gap is a sinusoid of constant magnitude 
and phase, regardless of the excitation frequency. Therefore, the magnetic-field-intensity 
phasor Hz ( x) remains constant in the interlayer gaps and need not be plotted. Also 
note that the layer between x = 9 x 10-4 m and x = 16 x 10-4 m has exactly the same 
boundary conditions as the single layer that is illustrated in Section 4.3.2. Therefore, 
at each frequency, the layer between x = 9 x 10-4 m and x = 16 x 10-4 m exhibits 
the exact same H z(x) and J 

11
(x) distributions as is seen for the single-layer example of 

Section 4.3.2. 

The plot of the current-density phasors on the lower set of axes in Fig. 4.18 and 
the values in Table 4.1 suggest that at 1 kHz the currents in each of the four layers is 
almost uniformly distributed, since the magnitude and phase of .ly( x) across each layer 
is approximately constant. The magnitude of .,[11 (x) across any of the four layers varies 
by no more than 5%, while the phase varies by no more than 29°. Also, we see from 
Fig. 4.18 that the current density in the outer layer is three times greater in magnitude, 
and 180° out of phase with respect to the current density in each of the three inner layers. 
Therefore, if we consider each of our layers to consist of a single turn of conductor, then 
the instantaneous sum of the ampere-turns across the four layers is in fact zero. 

Figures 4.19 through 4.21 show the progression of the magnetic-field-intensity and 
current-density phasor distributions for excitation frequencies of 10 kHz, 100 kHz and 
1 MHz, and Tables 4.2 through 4.4 contain corresponding data points. The changes in 
the phasor distributions of a single layer as the frequency increases have already been 
discussed above in Section 4.3.2, and the same arguments apply to each of the four 
layers in this section. In general, we see that as the frequency increases, the magnitude 
of both Hz( x) and .,[11 ( x) becomes attenuated near the center of each layer, while the 
magnitude of .,[11 (x) becomes much greater near the surfaces of each layer. In other 
words, the alternating magnetic field's diminishing ability to penetrate deep into each 
winding layer causes the current to be concentrated in regions near the surfaces of each 
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Figure 4.18: The magnetic-field-intensity and current-density phasor distri
butions across the four-layer solenoid of Fig. 4.15 at an excitation frequency 
of 1 kHz. 
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Table 4.1: Selected Data Points for the 1 kHz Example of Fig. 4.18 

1 kHz 

X 
0.00000e+00 
1.00000e-04 
2.00000e-04 
3.00000e-04 
4.00000e-04 
5.00000e-04 
6.00000e-04 
7.00000e-04 
8.00000e-04 
9.00000e-04 
l.00000e-03 
1.l0000e-03 
1.20000e-03 
1.30000e-03 
l.40000e-03 
1.50000e-03 
1.60000e-03 
l.70000e-03 
l.80000e-03 
l.90000e-03 
2.00000e-03 
2.l0000e-03 
2.20000e-03 
2.30000e-03 
2.40000e-03 
2.50000e-03 
2.60000e-03 
2.70000e-03 
2.80000e-03 
2.90000e-03 
3.00000e-03 
3.l0000e-03 
3.20000e-03 
3.30000e-03 
3.40000e-03 

H mag 
o-:-oooooe+oo 
1.42824e-01 
2.85648e-0l 
4.28474e-01 
5.71309e-01 
7.14162e-01 
8.57050e-01 
1.00000e+00 
l.00000e+00 
1.00000e+00 
1.14263e+00 
1.28542e+00 
1.42825e+00 
1.57109e+00 
1.71395e+00 
l.85688e+00 
2.00000e+00 
2.00000e+00 
2.00000e+00 
2.14247e+00 
2.28521e+00 
2.42803e+00 
2.57087e+00 
2.71373e+00 
2.85672e+00 
3.00000e+00 
3.00000e+00 
3.00000e+00 
2.57115e+00 
2.14248e+00 
1.71393e+00 
1.28542e+00 
8.56943e-01 
4.28471e-01 
0.00000e+00 

H phase 
0-:-0000 

-1.9234 
-1.8032 
-1.6028 
-1.3223 
-0.9616 
-0.5209 

0.0000 
0.0000 
0.0000 

-0.8714 
-1.3356 
-1.4906 
-1.3988 
-1.1019 
-0.6287 

0.0000 
0.0000 
0.0000 

-0.8013 
-1.2772 
-1.4708 
-1.4158 
-1.1388 
-0.6611 

0.0000 
0.0000 
0.0000 

-0.5209 
-0.9616 
-1.3223 
-1.6028 
-1.8032 
-1.9234 

0.0000 

J mag 
l.42824e+03 
1.42824e+03 
1.42827e+03 

·1.42841e+03 
1.42877e+03 
l.42955e+03 
1.43095e+03 
1.43326e+03 
0.00000e+00 
1.43827e+03 
1.43322e+03 
l.42977e+03 
1.42835e+03 
1.42945e+03 
l.43359e+03 
1.44131e+03 
1.45318e+03 
0.00000e+03 
1.46304e+03 
l.44581e+03 
l.43402e+03 
1.42860e+03 
1.43043e+03 
1.44037e+03 
l.45916e+03 
l.4874le+03 
0.00000e+03 
4.29978e+03 
4.29285e+03 
4.28864e+03 
4.28632e+03 
4.28522e+03 
4.28481e+03 
4.28471e+03 
4.28471e+03 

J phase 
17-g-_0365 
178.1568 
178.5174 
179.1185 
179.9597 
181.0406 
182.3602 
183.9164 
0.000000 
172.1772 
173.9600 
175.9946 
178.2770 
180.8003 
183.5545 
186.5254 
189.6950 
0.000000 
166.4577 
169.8144 
173.4819 
177.4356 
181.6400 
186.0494 
190.6099 
195.2626 
0.000000 
3.9164 
2.3602 
1.0406 

-0.0403 
-0.8815 
-1.4826 
-1.8432 
-1.9635 
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Figure 4.19: The magnetic-field-intensity and current-density phasor distri
butions across the four-layer solenoid of Fig. 4.15 at an excitation frequency 
of 10 kHz. 
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Table 4.2: Selected Data Points for the 10 kHz Example of Fig. 4.19 

10 kHz 

X H mag H phase J mag J phase 
O.OOOOOe+OO o-:-oooooe+oo "IT.0000 1-:-39605e+03 lb0.5350 
1.00000e-04 1.39606e-01 -19.0642 l.39625e+03 161.7372 
2.00000e-04 2.79253e-01 -17.8621 l.39932e+03 165.3379 
3.00000e-04 4.19145e-Ol -15.8594 1.41255e+03 171.2874 
4.00000e-04 5.59816e-01 -13.0592 1.44760e+03 179.4014 
5.00000e-04 7.02282e-01 -9.4696 1.51902e+03 189.2615 
6.00000e-04 8.48201e-01 -5.1070 1.64145e+03 200.2059 
7.00000e-04 1.00000e+OO 0.0000 l.82655e+03 211.4858 
8.00000e-04 1.00000e+OO 0.0000 O.OOOOOe+OO 0.000000 
9.00000e-04 1.00000e+OO 0.0000 2.16940e+03 119.7010 
1.00000e-03 1.12119e+OO -8.5506 l.82064e+03 127.6220 
1.lOOOOe-03 1.25745e+OO -13.1865 l.53880e+03 141.7406 
1.20000e-03 l.39771e+OO -14.7382 1.4069le+03 162.9370 
1.30000e-03 1.53841e+OO -13.8219 1.51001e+03 186.9886 
1.40000e-03 1.68132e+OO -10.8587 1.84820e+03 207.1418 
1.50000e-03 1.83220e+OO -6.1601 2.35569e+03 221.8426 
1.60000e-03 2.00000e+OO 0.0000 2.97797e+03 232.8359 
1.70000e-03 2.00000e+OO 0.0000 O.OOOOOe+OO 0.000000 
1.80000e-03 2.00000e+OO 0.0000 3.40711e+03 104.1605 
1.90000e-03 2.10528e+OO -7.8573 2.60577e+03 110.1328 
2.00000e-03 2.23670e+OO -12.6034 1.88065e+03 124.4120 
2.lOOOOe-03 2.37636e+OO -14.5405 1.43102e+03 154.6951 
2.20000e-03 2.51707e+OO -13.9915 1.59658e+03 193.8641 
2.30000e-03 2.66062e+OO -11.2253 2.29856e+03 218.8485 
2.40000e-03 2.81638e+OO -6.4772 3.24257e+03 232.6002 
2.50000e-03 3.00000e+OO 0.0000 4.30640e+03 241.7189 
2.60000e-03 3.00000e+OO 0.0000 O.OOOOOe+OO 0.000000 
2.70000e-03 3.00000e+OO 0.0000 5.47965e+03 31.4858 
2.80000e-03 2.54460e+OO -5.1070 4.92434e+03 20.2059 
2.90000e-03 2.10685e+OO -9.4696 4.55705e+03 9.2615 
3.00000e-03 1.67945e+OO -13.0592 4.34280e+03 -0.5986 
3.lOOOOe-03 1.25744e+OO -15.8594 4.23765e+03 -8.7126 
3.20000e-03 8.37758e-01 -17.8621 4.19796e+03 -14.6621 
3.30000e-03 4.18818e-01 -19.0642 4.18875e+03 -18.2628 
3.40000e-03 O.OOOOOe+OO 0.0000 4.18814e+03 -19.4650 
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Figure 4.20: The magnetic-field-intensity and current-density phasor distri
butions across the four-layer solenoid of Fig. 4.15 at an excitation frequency 
of 100 kHz. 
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Table 4.3: Selected Data Points for the 100 kHz Example of Fig. 4.20 

100 kHz 

X H mag H phase J mag J phase 
0.00000e+00 o:-oooooe+oo 0.0000 5:-25562e+02 41.2696 
1.00000e-04 5.26076e-02 225.2756 5.33222e+02 53.1994 
2.00000e-04 1.06749e-01 237.2053 6.37812e+02 84.5987 
3.00000e-04 1.69836e-01 256.3328 9.77408e+02 118.5125 
4.00000e-04 2.59097e-0l 280.5344 1.60558e+03 147.0011 
5.00000e-04 4.01272e-01 306.9156 2.59249e+03 173.0797 
6.00000e-04 6.31702e-0l 333.5756 4.11599e+03 198.9081 
7.00000e-04 1.00000e+00 360.0000 6.49919e+03 224.9757 
8.00000e-04 l.00000e+00 360.0000 0.00000e+00 0.000000 
9.00000e-04 1.00000e+00 0.0000 7.54842e+03 44.4600 
1.00000e-03 6.06942e-01 -35.8975 5.03306e+03 25.7643 
1.l0000e-03 5.15767e-01 -75.9305 2.85883e+03 19.5702 
1.20000e-03 5.85708e-01 -93.2190 9.39182e+02 63.8825 
1.30000e-03 6.76694e-01 -85.3711 2.39787e+03 158.2123 
1.40000e-03 8.45511e-01 -59.8853 5.20725e+03 180.1128 
1.50000e-03 1.24788e+00 -28.7183 8.67772e+03 200.8921 
1.60000e-03 2.00000e+00 0.0000 1.35229e+04 224.8317 
1.70000e-03 2.00000e+00 0.0000 0.00000e+00 0.000000 
1.80000e-03 2.00000e+00 0.0000 1.45721e+04 44.5750 
l.90000e-03 1.22306e+00 -33.4615 9.59601e+03 24.2973 
2.00000e-03 9.61707e-01 -71.2844 5.47898e+03 13.5126 
2.l0000e-03 1.00487e+00 -91.4626 1.53561e+03 32.6161 
2.20000e-03 l.09599e+00 -86.7649 3.23589e+03 163.7482 
2.30000e-03 1.29345e+00 -61.9907 7.84794e+03 182.4309 
2.40000e-03 l.86475e+00 -29.4952 l.32427e+04 201.5086 
2.50000e-03 3.00000e+00 0.0000 2.05466e+04 224.7862 
2.60000e-03 3.00000e+00 0.0000 0.00000e+00 0.000000 
2.70000e-03 3.00000e+00 0.0000 l.94976e+04 44.9757 
2.80000e-03 1.89510e+00 -26.4244 1.23480e+04 18.9081 
2.90000e-03 1.20382e+00 -53.0844 7.77747e+03 -6.9203 
3.00000e-03 7.77290e-01 -79.4656 4.81675e+03 -32.9989 
3.l0000e-03 5.09508e-01 -103.6672 2.93222e+03 -61.4875 
3.20000e-03 3.20246e-0l -122.7947 1.91344e+03 -95.4013 
3.30000e-03 1.57823e-01 -134.7244 1.59967e+03 -126.8006 
3.40000e-03 0.00000e+00 0.0000 1.57668e+03 -138.7304 
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Figure 4.21: The magnetic-field-intensity and current-density phasor distri
butions across the four-layer solenoid of Fig. 4.15 at an excitation frequency 
of 1 MHz. 
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Table 4.4: Selected Data Points for the 1 MHz Example of Fig. 4.21 

1 MHz 

X H mag H phase J mag J phase 
0.00000e+00 o:-oooooe+oo 0.0000 1:-61739e+00 4:-0321 
1.00000e-04 1.77060e-04 222 .-7539 3.25855e+00 86.2188 
2.00000e-04 7.13443e-04 304.9407 l.46940e+0l 170.1046 
3.00000e-04 3.04563e-03 388.0248 6.23756e+0l 253.0119 
4.00000e-04 1.29633e-02 471.0133 2.65562e+02 336.0142 
S.00000e-04 5.51838e-02 554.0092 l.13047e+03 419.0091 
6.00000e-04 2.34912e-01 637.0046 4.81229e+03 502.0046 
7.00000e-04 1.00000e+00 720.0000 2.04855e+04 585.0000 
8.00000e-04 1.00000e+00 0.000000 0.00000e+00 0.00000 
9.00000e-04 1.00000e+00 0.0000 2.04879e+04 44.9941 
1.00000e-03 2.35119e-01 -83.0655 4.80863e+03 -37.9312 
1.l0000e-03 5.46902e-02 -164.5945 1.14137e+03 -122.3674 
1.20000e-03 1.49809e-02 -272.7877 2.79309e+02 -177.6703 
1.30000e-03 2.64715e-02 -255.5438 5.27172e+02 -17.2415 
1.40000e-03 1.10115e-01 -165.6441 2.26626e+03 58.6625 
1. 50000e-03 4.69928e-0l -83.0129 9.62276e+03 142.0206 
1. 60000e-03 2.00000e+00 0.0000 4.09722e+04 224.9985 
1.70000e-03 2.00000e+00 0.000000 0.00000e+00 0.00000 
1.80000e-03 2.00000e+O0 0.0000 4.09747e+04 44.9956 
1.90000e-03 4.70135e-01 -83.0480 9.61909e+03 -37.9473 
2.00000e-03 1.09621e-01 -164.9459 2.27717e+03 -122.0257 
2.l0000e-03 2.85219e-02 -267.5257 5.41195e+02 -183.9144 
2.20000e-03 4.00918e-02 -257.6598 7.91236e+02 -14.9825 
2.30000e-03 1.65047e-01 -165.5282 3.40209e+03 58.5474 
2.40000e-03 7.04944e-01 -83.0188 1.44332e+04 142.0260 
2.50000e-03 3.00000e+00 -0.0000 6.14589e+04 224.9980 
2.60000e-03 3.00000e+00 0.000000 0.00000e+00 0.00000 
2.70000e-03 3.00000e+00 -0.0000 6.14565e+04 45.0000 
2.80000e-03 7.04737e-01 -82.9954 1.44369e+04 -37.9954 
2.90000e-03 1.65551e-0l -165.9908 3.39140e+03 -120.9909 
3.00000e-03 3.88898e-02 -248.9867 7.96685e+02 -203.9858 
3.l0000e-03 9.13688e-03 -331.9752 1.87127e+02 -286.9881 
3.20000e-03 2.14033e-03 -415.0593 4.40821e+0l -369.8954 
3.30000e-03 5.31180e-04 -497.2461 9.77566e+00 -453.7812 
3.40000e-03 0.00000e+00 0.0000 4.85218e+00 -535.9679 
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layer. Note, however, that there is no concentration of current density near the surfaces 
at x = 0 and at x = 34 x 10-4 m, since there is no magnetic field impending upon 
these surfaces (the boundary-value magnetic fields have zero magnitude). For the low
frequency cases of Figs. 4.18 and 4.19, the non-zero current densities that appear near 
the surfaces at x = 0 and x = 34 x 10-4 m are due only to the magnetic fields which 
are present near the surfaces at x = 1 x 10-4 m and x = 27 X 10-4 m, respectively. 
For the high-frequency cases of Figs. 4.20 and 4.21, however, the magnetic fields near 
the surfaces at x = 1 x 10-4 m and x = 27 x 10-4 m cannot penetrate as deeply into 
their respective layers. Accordingly, the magnitude of the current density at both x = 0 
and x = hcu for the 100 kHz-case is reduced to about 37% of the corresponding values 
for the 1 kHz-case and, for the 1 MHz-case, the current density at these two points less 
than 1% of the corresponding values for the 1 kHz case. In Fig. 4.21, we can plainly see 
the substantial impact of skin effect as the magnetic field intensity becomes restricted to 
regions very close to the surfaces of each layer; and the current density becomes heavily 
concentrated in these same regions. 

A final example that we wish to consider is illustrated in Fig. 4.22. Once again, we 
wish to model this four layer solenoid with four infinite current sheets, and intentionally 
establish a four-layer total of zero ampere-turns so that the solenoid resembles a real 
transformer with a high-permeability core. In this case, however, we choose two of the 
inner winding layers to carry 1.5 units of current each, and the outer winding to carry 
3 units of current. Thus, one of the inner windings is left open-circuited, so that it has 
zero net current. Figures 4.23 through 4.26 show the distributions of Hz( x) and J y ( x) at 
each of the four frequencies used in the above examples. These distributions look similar 
to those seen in Figs. 4.18 through 4.21. On the lower set of axes in Fig. 4.23, note 
that there is no current flowing in the open-circuited winding layer which lies between 
x = 9 x 10-4 m and x = 16 ·x 10-4 m. However, as the frequency increases, we begin to 
see some current flow; for the 1 MHz case of Fig. 4.26, there are large current densities 
that appear in the open-circuited layer. Nevertheless, the net current density in this 
layer at every instant in time is still zero ( as it must be) since there is an equal amount 
of current flowing in both the negative and the positive directions. In fact, the time 
variation of the actual current-density distribution for the open-circuited layer would be 
similar to that shown in the twelve plots of Fig 4.13, but would instead exhibit precisely 
odd symmetry about the center of the layer at each point in time. 

The fact that such large currents can flow in an open-circuited conductor is not 
so surprising if we consider the fundamental origin of ac currents in a conductor. In 
Appendix D we show that it is the electric-field component of an electromagnetic wave 
that causes the sinusoidal currents to flow in a winding layer. If we focus on the open
circuited layer of Fig. 4.26, then we can say that the resulting distribution of magnetic 
field intensity and current density across this layer actually consists of a superposition of 
two transverse electromagnetic (TEM) waves. One wave originates at x = 9 x 10-4 m and 
travels to the .left, while the other wave originates at x = 16 x 10-4 m and travels to the 
right. We know that the projection of the current-density phasors in the open-circuited 



106 Duke University Section 4.4.2 

Figure 4.22: Structure of a four-layer solenoid. Two of the three iriner layers 
are of the same winding while the other inner layer is left open circuited. 
The outer layer carries a current equal to the sum of the currents in the two 
current-carrying inner layers. 
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Figure 4.23: The magnetic-field-intensity and current-density phasor distri
butions across the four-layer solenoid of Fig. 4.22 at an excitation frequency 
of 1 kHz. 
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Four-Layer ff-Field Distribution at 10 kllz 
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Figure 4.24: The magnetic-field-intensity and current-density phasor distri
butions across the four-layer solenoid of Fig. 4.22 at an excitation frequency 
of 10 kHz. 
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Figure 4.25: The magnetic-field-intensity and current-density phasor distri
butions across the four-layer solenoid of Fig. 4.22 at an excitation frequency · 
of 100 kHz. 
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Four-Layer H-Fleld Distribution at 1 MHz 
{One Conductor Open-Circuited) 

Section 4.4.2 
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Figure 4.26: The magnetic-field-intensity and current-density phasor distri
butions across the four-layer solenoid of Fig. 4.22 at an excitation frequency 
of 1 MHz. 
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layer of Fig. 4.26 onto the x vs Re plane is proportional to the actual current-density 
distribution at the instant in time wt = 0. This particular distribution of real current 
density is actually a result of the fact that at that instant, the wave traveling to the 
left tends to generate . a current that primarily flows in the +y-direction, while the wave 
traveling to the right tends to generate a current that primarily flows in the -y-direction. 
At low frequencies, where the wavelength of each TEM wave is much greater than the 
copper height hcu, the influence of each wave extends completely across the layer, and, 
since the waves have opposing influences, there is no current density (Fig. 4.23). However, 
at higher frequencies, each of the TEM waves is almost completely attenuated before 
reaching the other side, and therefore each wave acts alone to generate current density 
in the appropriate direction near the surface from which it originates (Fig. 4.26). 

The above examples and illustrations are intended to provide the reader with a better 
understanding of equations ( 4.36) and ( 4.39). In addition, by incorporating some of the 
basic physical principles that are developed in Appendix D, it may also be possible for 
the reader to gain greater insight into the fundamental origin and nature of skin effect 
and eddy currents. In either case, the above graphical illustrations emphasize the fact 
that skin effect can have a significant influence in determining the distributions of the 
magnetic field intensity and current density in the winding layer of a transformer. Our 
next logical step is to determine the effect of these distributions on the energy-storage 
and power-loss characteristics of a winding layer. 

4.5 COMPUTATION OF POWER DISSIPATION AND 
ENERGY-STORAGE IN WINDING LAYERS FROM 
THE FIELD SOLUTIONS 

4.5.1 Overview 

In Section 4.2, expressions for the magnetic field intensity Hz and the current density J..y 
for any infinite current sheet are derived and presented in (4.50) and (4.51), respectively, 
as functions of the boundary conditions for the magnetic field intensity on the surfaces 
of the current sheet. In Section 3.1.2, it is shown that each layer of conductors in a 
transformer can be effectively modeled by an infinite current sheet. Thus, ( 4.50) and 
(4.51) describe the magnetic field intensity and the current density, respectively, at every 
point throughout the volume of any conductor layer in the transformer winding space. 
Such expressions can be utilized to calculate a value for the impedance between any 
two transformer windings. The development of an expression for the ac impedance 
requires the calculation of the ac winding resistance and the ac leakage inductance of 
the transformer under the appropriate winding-excitation conditions. Several additional 
new ideas apply to these calculations in general and are worth being emphasized at this 
point. 
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Providing the magnetizing inductance is relatively large, reflection indicates that 
the only reasonable use of the term leakage inductance is with reference to the total 
inductance that exists between two windings taken as a pair. For a simple two-winding 
transformer, there is only one such leakage inductance; in more complicated devices, 
however, there is a leakage inductance between each pair of windings. Therefore, in 
calculating formulae for leakage inductance in transformers, we want to keep in mind 
that the formulae are written for situations where only two windings of the device carry 
a net current. This is the same situation that exists when measuring the short-circuit 
impedance of a transformer in the laboratory. In such a test, one winding is short
circuited and one winding is excited from a source; if the device has any other windings, 
they are left open-circuited. The expressions that we derive for the impedance between 
two windings in the following discussion are based on such a short-circuit test condition. 

The calculation of impedance can be divided into a calculation of the real and imag
inary parts of the impedance. We derive separate expressions for both the resistive and 
the inductive components of the impedance between any two windings. 

After the field solution has been obtained for the magnetic field intensity and the 
current density, the next step is to apply the field solution to model a transformer. 
Depending on the model assumed for the transformer-two models are proposed in 
Chapters 7 and 8-the various parameters associated with the equivalent model can be 
estimated either through laboratory measurements or through calculation based on the 
solutions to the magnetic field intensity and the current density derived in this chapter. 
It is shown in Chapter 5 that the estimation of the model parameters centers on the 
computation of the power losses and on the energy stored in the magnetic field in the 
space occupied by the winding layers. Hence, the calculation of the power losses and 
the energy stored in the winding layers is a crucial step in obtaining parameters for such 
models. 

In general, the instantaneous power loss per unit volume pd(t) at a point is given by 
(3.16) and the instantaneous energy stored in the magnetic field per unit volume wm(t) 
at a point is given by (3.17). They are repeated here for convenience. 

Wm(t) 

IJ(t)l2 
(T 

µo IH(t)l2 
2 

(4.69) 

(4.70) 

The total instantaneous conduction loss Pn(t) and the total instantaneous energy Wn(t) 
stored in the magnetic field in the nth conducting layer are then equal, respectively, to 
the volume integrals of pd(t) and wm(t) over the volume occupied by the nth layer. 

!!fvn Pd(t) dv = !!fvn IJ~)l
2 

dv (4.71) 

f!fvn Wm(t)dv= f!fvn µo IH(t)l2 
d 

2 1/ (4.72) 
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where the subscript Vn in the integration symbol is used to remind us that this volume 
integral is carried out over the winding space occupied by the nth layer. Since the current 
density in the air space between winding layers is equal to zero, the resistive portion of 
the leakage impedance can be computed entirely from the power loss Pn in the winding 
layers. On the other hand, the magnetic field intensity is not equal to zero in the air 
space between winding layers. Therefore, the estimation of the reactive portion of the 
leakage impedance requires not only the computation of Wn , the energy stored in the 
magnetic field in the winding layers, but also the computation of the energy stored in the 
magnetic field in the air space between winding layers. The computation of the energy 
stored in the air space will be discussed in more detail in Section 5.2.5.2. 

As will be shown later in Sections 4.5.2 and 4.5.3, it is easier in the case of sinusoidal 
excitation to work with the average power loss and average energy storage over one 
period T of the sinusoid. Taking the average of the instantaneous conducting loss Pn(t) 
and the instantaneous energy storage Wn (t) defined in (4.71) and (4.72) then gives 

; l !!Iv" 
; l !!Iv" 

IJ(t)l
2 

d11 dt 
(1 

( 4. 73) 

(4.74) 

where the symbols (Pn) and (Wn) are used to represent the power loss and the energy 
storage in the space of the n

th winding layer, respectively, averaged over one period of 
excitation. The integration with respect to volume and the integration with respect to 
time can be interchanged: 

f!fvn 
(; h jJ�

)
l

2 

dt) d11 

(Wn) = ff fvn (; h µo l�
(t)

l
2 

dt) d11

By defining the results of the integration with respect to time as 

(wm) = � r µo IH(t)l
2 

dt 
T JT 2

(4.75) 

(4.76) 

(4.77) 

( 4.78) 

where (pd) and ( Wm) are the average power loss per unit volume and the average energy 
storage per unit volume, respectively, the average power dissipated and the average 
energy storage in the volume of the nth layer can be rewritten as: 

(4.79) 
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(4.80) 

For the n th winding layer, the height x varies from zero to hcu, the depth y varies from 
zero to the mean length of turn for the nth layer lTn, and the breadth z varies from 
zero to bviin• The terms height, breadth, and depth are defined in Section 2.1. The 
integrations in ( 4. 79) and ( 4.80) become 

(4.81) 

(4.82) 

The expressions derived for the phasors of the magnetic field intensity and for the 
current density, (4.50) and (4.51), indicate that the magnetic field intensity and the 
current density are dependent on the height x but not on the depth y nor the breadth z. 
This implies that the average loss density (Pd) and the average energy storage density 
(wm) are dependent on x but not on y nor z. As a result, it is advantageous to evaluate 
the volume integrals in ( 4.81) and ( 4.82) in two steps; the first step is a single integration 
in the x-direction, and the second step is a double integration involving the y- and z
directions. Let us define the results of the integrations with respect to x as: 

(4.83) 

(4.84) 

Then the double integration with respect toy and z becomes trivial multiplication pro
cesses as the integrands (QJ) and (QH) are independent of y and z, giving 

(4.85) 

(4.86) 

The benefit of evaluating the integral over the x coordinate first is that the resulting 
formulae yield the average power dissipation (QJ) and the average energy storage (QH) 
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per square meter of conductor in the y-z plane. These expressions are written in terms 
of the boundary conditions so that the results are general for any winding layer. Once 
the integrations have been evaluated over the height ( x-coordinate) of a current sheet, 
the results can be multiplied by the depth and breadth of the winding layer to get the 
complete volume integrals. The derivation of (QJ) and (QH) are presented in details in 
the next two sections. 

J.P. Vandelac and P. Ziogas follow a procedure such as this to calculate the total 
power dissipation in a winding layer [19]; M.P. Perry in [13] evaluates the integration 
only over the layer height to derive expressions for power dissipation per square meter 
of conductor in the breadth-depth plane. These two analyses are both dependent on the 
actual currents in the transformer windings under load, and neither of them address the 
inductance of the windings at all. Their techniques are general and form the basis for the 
discussion here, but we do not follow the application of their results directly since we are 
interested in determining the load-independent circuit impedances. The type of analysis 
that both of these authors pursue is aimed more at a quantification of total winding 
losses than toward the development of a circuit model which can be used to predict the 
transformer terminal voltage characteristics. In the next sections, we present the main 
points of the solution for both average power loss (QJ) and average energy storage (QH) 
per square meter in the y-z plane in a winding layer. The results of this solution for a 
single layer are then used to calculate the characteristic impedances of a multiwinding 
transformer. 

4.5.2 Average Power Dissipation Per Square Meter of an Infinite 
Current Sheet 

Equation ( 4. 77) defines, for the case of periodic excitation, the average power dissipated 
per unit volume as 

(4.87) 

where J(t) is the instantaneous current density at any point in an infinite current sheet. 
Since the current density in our model transformer has a nonzero component only in the 
y-direction, ( 4.87) can be further simplified to 

(4.88) 

The solutions for the current density and the magnetic field intensity derived in the 
previous sections, however, are in the form of phasor variables. Although the equivalent 
time-domain functions can always be computed from the phasor variables, one can take 
advantage of the complex arithmetic and work directly with the phasor variables. First, 
consider that the excitation is at an angular frequency w where w = 21r/T. Since the 
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excitation is sinusoidal, the current density J 11 (t) and its corresponding phasor represen
tation J 

II 
can be assumed to take the forms of 

(4.89) 

(4.90) 

where IJ11 1, the magnitude of J...;, is also the rms value of the current density. It is 
understood that the current density is also a function of the height x and its dependence 
on xis not explicitly shown here. Substituting (4.89) into (4.88) and carrying out the 
integration with respect to time yields 

= I.J:111
2 

<T 
(4.91) 

By definition, the product of the phasor J II and its complex conjugate J.;, gives the square 
of the magnitude of the phasor 

( 4.92) 

Hence, it is possible to express the average loss density (pd) at a point in terms of the 
phasor of J 11 (t) as 

(4.93) 

It is shown in the analysis of the infinite current sheet that the current density J has 
a nonzero component l...y in the y-direction which varies with respect to the height x. 
Reinserting the dependence of _l11 on the height x gives 

(4.94) 

N3 indicated earlier in ( 4.83), the integration of (Pd) from x = 0 to x = hcu yields the 
average power dissipated per square meter of current sheet in the y-z plane, designated 
as (QJ), to match the symbol used in [13,19]. For ease of expressing the solution for the 
current density and the magnetic field intensity, we have introduced a variable X earlier 
in ( 4.40). Depending on the magnitude of the magnetic field intensity on the boundaries 
of the conductor, X is defined either as X = x or X = hcu - x. Instead of integrating 
(4.94) with respect to x, the average power dissipated in watts per square meter (QJ) 
can also be obtained by integrating 

<T 
(4.95) 
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from X = 0 to X = hcu• That is, 

(4.96) 

To evaluate this integral, we must expand the product of the complex conjugates 
inside the integrand. This is done in detail in Appendix E; the results of this expansion 
are restated here. In order to simplify the form of the following expressions, we introduce 
the relationships 

~ 

w 

V 

hcu 
8 

X -
8 
hcu -X 

8 
~-w 

(4.97) 

(4.98) 

(4.99) 

The variables w and v above are used simply to make the derivation given in Appendix E 
easier to read. The variable ~ also serves to simplify the derivation, but it has a physical 
interpretation that is important to understand. 

Equation ( 4.97) above states that ~ is the height of a winding layer in units of 
skin depth. Bear in mind that the skin depth of a conducting layer depends upon the 
frequency of the transformer excitation. We show in the expressions below that the 
power dissipated and energy stored in any winding layer of a transformer is a function 
of the boundary values of the magnetic field intensity Hz(X = 0) and Hz(X = hcu), the 
skin depth 8 of the conducting material at the excitation frequency, and ~, the height 
of the layer normalized to the skin depth of the material. 

This fact is important because it reminds us that it is not simply the frequency of the 
current in a transformer that causes the ac resistance and ac inductance effects in the 
device. Rather, it is the size of the conductors of the windings relative to the skin depth 
of the conductive material for the particular frequency of excitation. In other words, the 
so-called high-frequency effects that we are addressing in this document can occur at any 
excitation frequency provided the conductor size is large enough. Let us examine the case 
of 60-Hz power transmission lines. At 60°C, for example, the conductivity of annealed 
copper wire is u = 5.315 x 107 S/m. Together with w = 120:ir and µ0 = 4:ir x 10-1 H/m, 
this gives a skin depth 8 of 8.9 mm according to (4.7). Hence, there is a practical limit 
on the effectiveness of the size of conductors used in 60-Hz power transmission lines and 
power bus bars [21, p.201]. 

Returning to the integration of the average power-density function expressed by 
(4.96), the equation for the current density (4.51) is used in Appendix E to derive 
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lkl2 IHz(x = hcu)l2 

(cosh2~ - cos 2~) 

x { (cash 2w + cos 2w) 

+ ( o.2 + /32
) ( cash 2v + cos 2v) 

Section 4.5.2 

- 2a(cosh~cos(~ - 2w) +cash(~ - 2w)cos~) 

+ 2/3(sinh ~sin(~ - 2w) + sinh(~ - 2w) sin~) } 

(4.100) 

To see how the product J 11 (X)J;(X) varies as a function of X, v and w need to be 
eliminated from the above equation. From (4.98), we have w = X/S. From (4.99) we 
have v = ~ - w = ~ - (X/o). So this product of .l

11
(x)J;(x) can b_e rewritten as: 

lkl2 IJfz(X = hcu)l2 

.lr,(X)J;(X) = (cash 2~ - cos 2~) 

x { [cash (
2
:) + cos (

2
:)] 

+ ( o.
2 

+ {3
2

) [ cash ( 2~ -
2
:) + cos ( 2~ -

2
:)] 

- 20.[cosh~cos ( ~ - 2
:) + cash ( ~ - 2

:) cos~] 

+ 2/3 [sinh ~sin ( ~ - 2
0X) + sinh ( ~ - 2

;) sin~] } 

(4.101) 

The details in the integration of (4.101) from X = 0 to X = hcu are shown in Appendix G, 
and the results are restated here: 

Defining F1 and F2 as 

lkl2 I./L:(X = hcu)l2 0 
2 (cash 2~ - cos 2~) 

x { (1 + o.2 + f32)(sinh 2~ + sin 2~) 

- 4o.(sinh~ cos~+ cash~ sin~)} (4.102) 

sinh2~ + sin2~ 
cash 2~ - cos 2~ 

(4.103) 
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F
2 
( .6.) = sinh .6. cos .6. + cosh .6. sin .6. 

cash 2.6. - cos 2.6. 
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(4.104) 

and recalling from (4.6) that k = (1 + j)/8, or lkl 2 = 2/82 , we can write the final result 
from (4.96) for the average power dissipation per square meter (QJ) in the y-z plane as 

where 

IJiz(X:; hcu)l2 [(1 + a2 + ,8~)F1(.6.) - 4aF2(.6.)] 

llfz(X:; hcu)l
2 

{Q'.,(a,,8,.6.)) 

(4.105) 

(4.106) . 

These two equations essentially state the same result given by Vandelac and Ziogas in 
equation (A-17) of [19]. 

Since the functions F1(.6.) and F2(.6.) depend only on the parameter .6., they are 
generally applicable to a winding layer of arbitrary height hcu driven at an arbitrary 
excitation frequency w. The plots of Fi(.6.) and F2(.6.) are provided in Fig. 4.27. Once 
the conductivity <T and the frequency of excitation w are known, the skin depth 8 can 
be computed from (4.7). Then .6., the height of a winding layer in units of skin depth, 
can be computed from hcu and 8 from (4.97). The functional values of F1 and F2 can 
be read directly from Fig. 4.27. Given the boundary conditions on the magnetic field 
intensity phasors Hz(X = 0) and Hz(X = hcu), the parameters a and ,8 can be computed 
according to (4.48) and (4.49). With the knowledge of the parameters a and /3, and the 
values of F1 and F2, (Q'.,) can be computed from (4.106). Finally, the average power 
dissipation per square meter (QJ) in the y-z plane is computed according to (4.105). 
When .6. is large, the functions F1 and F2 approach to their respective limits: 

(4.107) 

(4.108) 

To obtain a quick estimation of ( Q'.,) in such a situation, F1 and F2 can be approximated 
by one and zero, respectively. The error introduced to (Q'.,) through such approximations 
is less than 10% for .6. ~ 2.2 and less than 5% for .6. ~ 4.1 for all values of a and ,8. 



120 

Fi 
10.00 

9 . 00 

8.00 

7.00 

6 .00 

5 .00 

4.00 

3.00 

2.00 

1.00 

0.00 

-£ 

?\ 
~\ 
r- \ ----,-,-,__ 

-t--
t--
t--

t-
t----
t--
I-------I-
I-
I-
I-
I-

0.10 

F2 
5.00 

~ 

\ 

4.00 

3 . 00 
§\ 
,-
,-
,--2.00 
,-
--,-

1.00 
,-
,-
,-
,-

0.00 
,-
,-
,-
r-

-1.00 
0.10 

\ 

Duke University 

I\ 
\ 
~ 
~ 

'-

r'\ 
"\ 

I"" '--.. 
I'-

-
r---. r--,.._ 

r---1' 

1.00 
DELTA 

t--,.._ 

--------
1.00 

DELTA 

Section 4.5.2 

I-

..... ..... 

..... 

.... .... ..... ..... 

.... .... 

I-
I-

;: 
..... ..... 

.... ..... 

..... 

..... 
I-
I-

::: 
10.00 

--..... 
,_ 

.... 
,_ 

-
--
I-

I-

-..... 

10.00 

Figure 4.27: The variation of (a) F1 and (b) F2 with respect to~-

. --- -----------



Section 4.5.3 Modeling Multiwinding Transformers 121 

4.5.3 Average Energy Storage Per Square Meter of an Infinite Cur-
rent Sheet 

We can carry out a completely parallel derivation for (QH), the average energy stored in 
the magnetic field per square meter in the y-z plane. The starting point of this derivation 
is (4.78), which is restated here: 

( Wm.) .!. r µo IH(t)l2 dt 
T }T 2 

(4.109) 

Since the magnetic field intensity in our model transformer has a nonzero component 
only in the z-direction, the above equation can be further simplified to 

(4.110) 

With the excitation being sinusoidal, the magnetic field intensity Hz(t) and its corre
sponding phasor representation Hz can be assumed to take the forms of 

(4.111) 

Hz = ILL I ei Bn (4.112) 

where IHzl, the magnitude of Hz, is also therms value of the magnetic field intensity. 
It is understood that the magnetic field intensity is also a function of the height x and 
its dependence on xis not explicitly shown here. Substituting (4.111) into (4.110) and 
carrying out the integration with respect to time yields 

(wm.) = ; h µo IH zl2 cos2(wt + 0H) dt 

· µo !Hz 12 

2 
(4.113) 

By definition, the product of the phasor Hz and its complex conjugate H; gives the 
square of the magnitude of the phasor 1Hzl2• Hence, the average energy storage density 
( wm.) can be written as 

µoHzH; 
2 

Reinserting the dependence of Hz on the height x gives 

µo ll.z( x )H;( x) 
2 

(4.114) 

(4.115) 
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The per cycle average of the energy stored in the magnetic field in joules per square 
meter of winding layer (QH) in the y-z plane can then be obtained by integrating (wm) 
from x = 0 to x = hcu 

(4.116) 

Since the solution for Hz is derived earlier in terms of the variable X, the above integra
tion can also be carried out with respect to the variable X for X = 0 and X = hcu 

(4.117) 

Using the same simplifying definitions ford, w, and v given in (4.97), (4.98), and (4.99), 
we show in Appendix F that the product Hz(X)H;(x) is equal to 

lliz(X = hcu)l 2 

cosh 2d - cos 2d 

x { (cosh 2w - cos 2w) 

+ (a2 + ,82)(cosh2v - cos2v) 

+ 2a[coshdcos(d- 2w) - cosh(d - 2w) cosd] 

- 2,e[sinhdsin(d- 2w) -sinh(d - 2w)sind] } (4.118) 

From (4.98), we have w = X/8. From (4.99) we have v = d - w = d - (X/8). So this 
product of Hz(X)H;(x) can be rewritten as: 

x { [cosh (
2
:) - cos (

2
:)] 

+ (a
2

+,a
2
)[cosh(2d-

2
:)-cos(2d-

2
:)] 

+ 2a[coshdcos ( d -
2
;) - cosh ( d -

2
;) cosd] 

- 2,a[sinhdsin ( d -
2
;) - sinh ( d-

2
;) sind] } 

(4.119) 
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The details in the integration of the above equation from X = 0 to X = hcu are shown 
in Appendix H, and the results are repeated here for convenience: 

{hcu 
lo _li..z(X)H!(X) dX = l.l[;i:(X = hcu) 12 8 

2 (cosh2~ - cos 2~) 

x { (1 + a:2 + ,82)(s~nh 2~--:- sin 2~) 

- 4a:(sinh ~cos~ - cosh ~sin~) } ( 4.120) 

To help visualizing the dependence of (QH), the per cycle average of the energy storage 
per square meter in the y-z plane, on the variable ~, we define F3 and F4 as 

sinh 2~ - sin 2~ 
cosh 2~ - cos 2~ 

sinh ~cos~ - cosh ~ sin~ 

cosh 2~ - cos 2~ 

( 4.121) 

(4.122) 

Substituting (4.120), (4.121), and (4.122) into (4.117), we can write the final result for 
the per cycle average of the energy storage per square meter in the y-z plane (QH) as, 

where 

µoh"lli..z(: = hcu)l
2 

[(l + a:2 + ,82)Fg(~) _ 4a:F4(~)] 

µo8IJiz(X ~ hcu)l
2 

(Qk,(a:, ,8, ~)) 
4 

( 4.123) 

(4.124) 

The plots of the two functions F3(~) and F4(~) are provided in Fig. 4.28. Once 
the conductivity u and the frequency of excitation w are known, the skin depth 8 can 
be computed from (4.7). Then~, the height of a winding layer in units of skin depth, 
can be computed from hcu and 8 from ( 4.97). The functional values of F3 and F4 can 
be read directly from Fig. 4.28. Given the boundary conditions on the magnetic field 
intensity phasors Hz(X = 0) and Hz(X = hcu), the parameters a: and ,8 can be computed 
according to (4.48) and (4.49). With the knowledge of the parameters a: and ,8, and the 
values of F3 and F4, (Qk,) can be computed from (4.124). Finally, the average energy 
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storage per square meter (QH) in the y-z plane is computed according to (4.123). Similar 
to F1 and F2, the functions Fs and F4 approach to the limiting values of 

lim Fs(a) = 1 
A-+oo 

(4.125) 

(4.126) 

To obtain a quick estimation of (Qj[) in such a situation, Fs and F4 can be approximated 
by one and zero, respectively. The error introduced to (Qj[) through such approximations 
is less than 10% for a~ 3.1 and less than 5% for a ~ 3.4 for all values of a and /3. 

4.6 SUMMARY OF THE FIELD SOLUTION FOR AN 
INFINITE CURRENT SHEET 

4.6.1 Introduction of Layer Porosity TJ Into the Equations 

Before making further use of the equations derived in this chapter, we should pause 
to restate some of the underlying assumptions that limit their domain of application. 
In Chapters 1 through 3, we make a series of simplifying assumptions concerning the 
structure of a transformer that eventually lead us to the infinite current sheet model of 
this chapter. These assumptions and their resulting implications may be summarized as 
follows : 

1. Assume that the discrete conductors that make up the transformer windings 
may be modeled by an ·equivalent foil that entirely fills the window breadth. 

Implications: Layer porosity must be introduced, and each layer may now be 
treated as a one-turn solenoid. 

2. Assume that the transformer has a pot core of infinite magnetic permeability. 
Implications: Only the leakage flux due to finite conductor thickness and finite 
interlayer gaps appears in the model, and we may now treat the solenoid that 
models a winding layer as an infinite solenoid. 

3 .. Assume for the purpose of field solution that a small portion of the surface of 
an infinite solenoid may be modeled by a fl.at sheet of conductor that extends 
infinitely in both the breadth and the depth directions. 

Implications: The calculation of the fields is greatly simplified, but the validity 
of the resulting equations is limited by the curvature in the windings of the 
transformer to be modeled. 

It is important to note that the infinite current sheet model that is obtained from 
assumption 3 above is for the purpose of obtaining the field solution only, and the 
equations that result from this model are to be used in conjunction with the model 
of assumption 2. However, before applying the equations of this chapter to a physical 
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transformer, we must incorporate the concept of layer porosity. In Section 2.2.1.3, we 
argue that the introduction of layer porosity as a multiplicative factor insures that the 
de resistance of the model winding is the same as that of the original winding that 
it replaces. This multiplicative factor appears as an effective decrease in conductivity. 
Based upon equation (2.2), we can define an effective conductivity Uetf as 

Uetf = TJU (4.127) 

Thus, we can incorporate the layer porosity into the equations of this chapter simply 
by using the numerical value of Uetf as determined by ( 4.127) instead of the intrinsic 
conductivity of the conductors. In the next section, we restate all of the significant 
equations of this chapter, and incorporate the use of Uetf wherever appropriate. 

4.6.2 Restatement of Significant Equations 

Using the definition of effective conductivity Uetf given in ( 4.127), we can restate the 
significant equations derived in this chapter as follows: 

The complex wave number k is given by 

The skin depth 8 is given by 

(4.129) 

The magnetic-field-intensity and current-density phasor distributions across the height 
of a layer are given by 

or, if we define X as 

x={ X 

hcu- X 

if IHz(x = hcu)I > IHz(x = O)I 
if IHz(x = hcu)I < IHz(x = O)I 

(4.130) 

(4.131) 

( 4.132) 
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and r. as 
r = a "/3 = JI.z(X = O) 
- +J H(X=h) -z cu 

then we can rewrite the distributions of (4.130) and (4.131) as 

( ) (-lY: kHz(X = hcu) [ ( . ) ( )] J 11 X = . . h kh coshkX - a+ J/3 coshk hcu - X 
Sln _ cu 

where 

If we define A as 

e = { 
0
1 if jHz(x = hcu)I > jHz(x = 0)j 

if jHz(x = hcu)I < jHz(x = 0)j 

F3(A) 

sinh 2A + sin 2A 
cash 2A - cos 2A 

sinh A cos A + cash A sin A 
cash 2A - cos 2A 

sinh 2A - sin 2A 

cash 2A - cos 2A 

sinh A cos A - cash A sin A 
cash 2A - cos 2A 

127 

( 4.133) 

(4.134) 

( 4.135) 

(4.136) 

(4.137) 

( 4.138) 

( 4.139) 

(4.140) 

(4.141) 

then we can use (4.134) and (4.135) above to write the average power dissipation per 
square meter in the y-z plane as 

jJI.z(X = hcu)l
2 [(1 + a 2 + /32)F1(A) - 4aF2(A)] 

Ueff D 

IJI.z(X =/cu)l
2 

(Q~(a,/3,A)) 
Ueff 

(4.142) 
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where 

(4.143} 

Likewise, the average energy storage per square meter in the y-z plane is given by 

where 

(Qn) µo8llL(: = hcu)l
2 

[(l + a.2 + ,82)Fs(~) _ 4a.F4(~)] 

µo8lliz(: = hcu)l
2 

{Q'n(a.,,8, ~)) 

(4.144) 

(4.145) 

The above equations, together with the assumptions and the derivations that have 
produced them, form the mathematical framework for the modeling of a multiwinding 
transformer for high-frequency applications. Using these equations, we are now in a 
position to obtain expressions for the short-circuit impedances that exist between two 
windings of a multiwinding transformer. 
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