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Chapter 5 

Derivation of Short-Circuit 
Impedances from Field Solutions 

In Chapter 4 we present equations ( 4.105) and ( 4.123) to determine, respectively, the 
average energy dissipated per square meter ( Q J) and the average energy stored per square 
meter (QH) for an infinite current sheet. In Section 4.6, these equations are applied to 
transformer winding layers where they are rewritten as (4.142) and (4.144), respectively. 
The discussion in Chapter 4 is very general and ( 4.142) and ( 4.144) do not depend 
upon the specific excitation of the transformer winding; however, most of the terms in 
(4.142) and (4.144) do depend upon the layer porosity of the winding layer, although 
this dependence is not always explicit. We now wish to determine the values of the 
impedances associated with specific hypothetical short-circuit tests between two windings 
of a multiwinding transformer. We adopt the nomenclature throughout this chapter and 
the rest of this report that Z(ik) is the impedance seen at the terminals of winding 
j when winding j is excited and winding k is shorted and all other windings are left 
open. First, we discuss the basic impedance measurements frequently performed on two
winding transformers and the extension of these tests to multiple-windings transformers. 
Then, we use equations (4.142) and (4.144) to derive equations for the short-circuit 
resistance R(jk) and the short-circuit inductance L(jk). 

5.1 IMPEDANCE MEASUREMENTS OF 
TRANSFORMER WINDINGS 

Before calculating transformer winding short-circuit impedances, we must first look at 
what measurements are commonly performed on transformers and what parameters can 
be determined by these tests. Although the emphasis in this report is on multiwinding 
transformers, it is instructive to understand how the results of open-circuit and short
circuit tests are used to determine the values of the circuit components for a two-winding 
transformer equivalent circuit. 

129 
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5.1.1 Two-Winding Transformer Measurements 

Figure 5.l(a) shows what is often referred to as the T-equivalent circuit of a twerwinding 
transformer. The two-winding T-equivalent circuit consists of an ideal transformer, a 
magnetizing impedance on the primary side of the ideal transformer, and primary and 
secondary leakage impedances. In this figure, the ideal transformer is denoted by the two 
coils with two parallel dashed lines between them. The magnetizing impedance is made 
up .of the magnetizing inductance L,,,,, in parallel with the core-loss equivalent resistance 
Re. The primary leakage impedance is made up of a series combination of a winding 
resistance Rw1 and a primary leakage inductance La; the secondary leakage impedance 
has similar elements Rw2 and L1.2. Although widely used, the T-equivalent circuit cannot 
be extended to a transformer with four windings which is the model being sought in this 
report. Transformer open-circuit and short-circuit tests to determine the values of the 
circuit elements in Fig. 5.1 are commonly performed as follows: 

1. Figure 5.l(b) shows the primary winding excited with rated voltage-designated 
~ 0 -and the secondary winding left open-circuited. In the case of a transformer 
with magnetic core material of high effective permeability, the leakage impedance 
presented by Rw1 in series with Lt1 usually can be assumed to be much smaller than 
the magnetizing impedance represented by Re in parallel with L,,,,,. In this case, 
the impedance seen by the source under open-circuit conditions is approximately 
equal to the :magnetizing impedance of Re in parallel with L,,,,,. 

2. Figure 5.l(c) shows the primary winding excited with rated current-designated 
I80-with the secondary winding short-circuited. Since the leakage impedance 
of the secondary winding referred to the primary winding is assumed to be much 
smaller than the magnetizing impedance, the impedance seen by the source is 
approximately equal to the sum of the primary and secondary leakage impedances 
referred to the primary winding, and the effect of Re and L,,,,, can be neglected in 
this test. 

3. The assumption is often made that the primary and secondary leakage impedances 
are approximately the same value when referred to the same winding. Therefore, 
we can split the impedance measured under short-circuit test into two equal impe
dances, one half represented by Rw1 and La and the other half represented by R!2 
and L~, the latter when reflected by the turns ratio squared into the secondary 
gives us values for Rw2 and Lt2- · 

The above discussion of the short-circuit and open-circuit tests of a twerwinding 
transfqrmer as usually encountered is useful to us here because it demonstrates three 
very important points about transformer measurements. First, when considering a trans
former with rated winding current applied under short-circuit conditions, whether it is 
a two-winding transformer or a multiwinding transformer, it is often acceptable to as
sume that the magnetizing impedance of the transformer is so large that its effect can 
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Figure 5.1: {a) The T-equivalent circuit of a two-winding transformer. 
(b) The T-equivalent circuit under open-circuit test conditions. (c) The 
T-equivalent circuit under short-circuit conditions where R~2 and L~2 rep
resent the values of Rw2 and L1.2, respectively, when reflected through the 
ideal transformer to the primary winding. 
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be neglected in comparison to the leakage impedance effects. We use this assumption 
throughout our discussion of multiwinding transformers, particularly in Chapters 7 and 8 
where two equivalent circuits for four-winding transformers are proposed. Second, the 
magnetizing or excitation impedance of a transformer appears in the equivalent-circuit 
model effectively as a shunt element. In Chapter 7, we use this fact in modeling a 
multiwinding transformer using a circuit model that neglects all such shunt elements. 
Finally, the short-circuit test shows that in a measurement situation, the primary and 
secondary leakage impedances cannot be separated. When we short-circuit one winding 
and excite another winding with a current source, the impedance that is measured is 
the leakage impedance between the two windings; we cannot measure only one leakage 
parameter at a time. In order to divide the measured short-circuit impedance for the 
two-winding case above into a primary and secondary leakage impedance, we had to 
make the assumption that the two leakage impedances are approximately equal when 
referred to the same winding, which in Fig. 5.1 is the primary. In the general case of an 
n-winding transformer, the equivalent circuit that represents the device is not as simple 
as for the two-winding case, therefore, this type of impedance division is not so easy. 
For the rest of our discussion, we focus our attention on a four-winding transformer, and 
we present methods for calculating analytically the short-circuit impedance between any 
two windings. In Chapters 7 and 8, we then relate these impedance values to component 
values in two equivalent-circuit representations of a multiwinding transformer. 

5.1.2 Multiwinding Transformer Measurements 

When a short-circuit test is performed on a four-winding transformer, one winding is ex
cited with rated current while another winding is short-circuited; the other two windings 
are left open. Here we do not refer to any one winding as the primary winding but rather 
consider the four windings simply as a single, coupled circuit. We adopt the notation 
used in [13] and denote the short-circuit impedance between windings j and k as Z(ik)· 

More specifically, we use Z(ik) to denote the impedance seen looking into winding j, the 
first index number in the subscript, when winding j is excited and winding k, the second 
subscripted index number, is shorted. 

Now, by taking two windings at a time, we can specify twelve different short-circuit 
tests for the four-winding transformer. In other words, if we number the windings 1 
through 4 and take any two windings at a time, we can measure the short-circuit impe

dances Z(12), Z(1s), Z(14), Z(21), Z(2s), Z(24), Z(s1), Z(s2), Z(s4), Z(41), Z(42), and Z(43)• 
Except for the turns ratio, the impedance between a pair of windings is independent of 
which winding is excited and which is shorted, so Z(ik) = (N;/N1c) 2Z(kj), which reduces 
the number of short-circuit tests to six. Thus, for the four-winding transformer un
der consideration it is sufficient to measure impedances Z(i2), Z(is), Z(u), Z(2s), Z(24), 
Z(34). In general, there are n(n -1)/2 different short-circuit tests that can be performed 
on a multiwinding transformer [1,13,18] which yield the same number of leakage im
pedances among the n windings. Therefore, for a four-winding transformer, there are 
(4 X 3) /2 = 6 different short-circuit tests, yielding six leakage impedances. 
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In Section 5.1.2 we describe the symbol Z(;k) used to denote the short-circuit impedance 
between windings j and k of a multiwinding transformer, and we state that there are a 
total of six different short-circuit impedances which characterize a four-winding trans
former. We now wish to derive equations to calculate these short-circuit impedances by 
using hypothetical short-circuit tests. The mathematical development of the field solu
tion in an infinite current sheet gives a quantitative description of the high-frequency 
leakage-flux conditions that exist in _a transformer based on the excitation conditions 
in the windings of the device. In this section, we use this field description to calculate 
values for the leakage impedance between any possible pair of windings in a four-winding 
transformer. 

5.2.1 Short-Circuit Conditions 

To calculate the short-circuit impedance between two windings based on the leakage flux 
in the transformer, we must first describe the flux pattern that exists in the windings for 
the short-circuit test of interest. In Section 3.1.2, we generate the profile of the magnetic 
field intensity-the field-intensity diagram-for direct currents in the layers of an infinite 
solenoid. Figures 3.6 and 3.7 show sets of these diagrams for various layer currents in 
a two-layer solenoid. In Section 3.1.3 we discuss qualitatively, and in Section 4.3.1 
we demonstrate pictorially that the straight-line field-intensity diagram applies only at 
relatively low frequencies, but that the values of Hz in the gaps between winding layers 
are independent of the excitation frequency. Since the solutions for the current-density 
and the magnetic-field-intensity distributions are written in terms of these values of Hz 
in the gaps, we find that the low-frequency field-intensity diagrams are useful tools for 
visualizing the flux pattern in a transformer and for determining the boundary conditions 
necessary to solve for the high-frequency distributions. 

Figure 5.2 shows a four-winding transformer under various short-circuit test condi
tions. Part (a) of the figure shows the right-hand side of a cross-sectional view of the 
transformer. The four windings of the device each contain two adjacent layers of conduc
tors which gives a total of eight winding layers in the transformer. Figure 5.2(b) shows 
the low-frequency field-intensity distributions for each of the six different short-circuit 
tests mentioned in Section 5.1.2. These plots of Hz(x, t) at an arbitrary time instant tare 
labeled H(;k) in keeping with the use of Z(;k) to designate the short-circuit impedance 
between windings j and k. 

Figure 5.2(c) shows a schematic representation of the terminal connections for each of 
the six short-circuit tests. In this figure, each layer of conductors is shown by a separate 
coil symbol; the internal connections between the layers, for example between layers 1 
and 2, 3 and 4, etc., are indicated by the lines connecting the various coils. The external 
connections between the excitation source and the transformer as well as the various 
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Figure 5.2: A four-winding transformer under various short-circuit condi
tions. In the winding cross-section of (a), the instantaneous current is as
sumed in each case to be flowing into the paper in the outer conducting 
winding and flowing out of the paper i_n the inner windings. Also shown are 
(b) the Hz(x,t) profiles at an arbitrary time instant t and (c) the schematic 
representations for the six different short-circuit tests including relative 
positions of external leads from the windings and internal shorts between 
the layers. 
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short-circuit connections are also shown. 
Magnetic-field-intensity profiles such as those.of Fig. 5.2(b) typically are shown with 

a field intensity of zero at the center leg of the transformer core which is justified as 
follows. In the discussion of a two-layered infinite solenoid in Section 3.1.2, it is pointed 
out that with no external fields present, the magnetic field intensity is always zero outside 
the solenoid, but inside the inner layer of the solenoid the field is zero only if the sum of 
the currents in all of the layers is zero. This condition is equivalent to having zero net 
ampere- turns in the windings of a transformer. 

The assumption of zero net ampere-turns is made throughout this report. In other 
words, the exciting current of the transformer core is assumed to be negligible relative 
to the load currents, which is the case for a core of very high permeability. Thus, the 
magnetic field intensity in the center leg of the core is assumed to be zero. 

5.2.2 Deriving the Magnetic-Field-Intensity Boundary Conditions for 
a Winding Layer 

The field-intensity diagrams Hz(x, t) given in Fig. 5.2(b) appear without labels defining 
the actual values of field intensity at any point in the window. This is done to emphasize 
the generality of these diagrams. Before calculating values of resistance and inductance 
for a transformer under a particular short-circuit test, we need to determine the boundary 
conditions of Hz(x) for each layer of the transformer winding using parameters which 
describe the physical layout and the excitation of the layer. In this section, we derive 
such a formula which expresses the difference between the boundary conditions as a 
function •Of the number of turns in the layer N1. and the current being conducted by the 
layer L_. 

Equation (4.68) in Section 4.3.2, 

IL(O) - Hz(hcu) = J 
h -Y 

cu 
(5.1) 

states that at low frequencies, the difference in the boundary conditions of the field 
intensity for any layer is proportional to the current density l..y of that layer which 
is independent of x. This equation is consistent with Ampere's law and results from 
a Taylor series approximation of (4.39) for frequencies significantly below the critical 
frequency. 

For an actual transformer winding layer consisting of N1. turns conducting a slowly
varying current of i1.(t), the instantaneous, uniform current density Jy(t) is 

(5.2) 

If the current and current density are expressed as phasers, this becomes 

(5.3) 
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Figure 5.3: Closed paths chosen to determine l(x) = f H z(x) • dl = 
Hz(x)bwin• The field intensity in the center leg of the core is assumed to be 
zero. 

Substituting this into (5.1) gives 

Nel.1. 
Hz(O) - Hz(hcu) = -b -. 

win 
(5.4) 

le is the net layer current seen at the terminals of the layer and is not affected by the 
distribution of J 

11
(x); therefore, (5.4) is true at all frequencies. 

5.2.3 Normalized Values of Field Intensity and MMF 

Before beginning the derivation of the short-circuit impedances, two ideas need to be 
stressed. First, the magnetic field intensity If z ( x) in the winding space is proportional 
to the magnetomotive force or mmf 1(x) of the winding space, since the integral of 
Hz(x) • dl around any of the closed paths in Fig. 5.3 yields .l(x) = Hz(x)bwin• Second, 
the values of Hz(x) or 1(x) can be normalized to any useful reference value. Therefore, 
the values of Hz( x) in the layers and in the gaps between layers can be normalized to 
any convenient value of magnetic field intensity. Using the subscript appendage "-N" to 
indicate a normalized value, we can write the normalized value of H z(x) in layer n as 

(5.5) 

and in gap n ~ 

(5.6) 

where H BASE is the base unit of magnetic field intensity and H 9n is the actual value 
of the magnetic field intensity in the n th gap of the winding structure. A completely 
similar expression for the normalized value of mmf in a gap is 

(5.7) 
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where 1 BASE is a convenient base unit ofmmf and 1 9n is the value of the magnetomotive 
force in the gap. 

The base value of mmf can be expressed as 

(5.8) 

A convenient value for NBASE is the number of turns of the excited winding NE, since 
the calculated short-circuit impedances are reflected into the excited winding. At first 
glance, it appears that a convenient value for [BASE would be Isc, the short-circuit 
current in the excited winding. This is not the case, however, as explained below. 

In Section 3.1.2 we adopted the convention that current "into the paper" on the right 
side of a solenoid produces magnetic field intensity in the positive z-direction inside 
the solenoid. Likewise, current "out of the paper" on the right side of the solenoid 
produces a negatively directed field intensity inside the solenoid. Using this convention, 
the transformer layer currents shown in Fig. 5.4(a) are associated with the low-frequency 
field-intensity plots of Fig. 5.4(b), regardless of which layer is excited and which is 
shorted. 

It is important that l.:sASE be consistent with this convention so that the diagrams of 
lL-N(x) have the same polarity as those of Hz(x). To accomplish this, LBASE cannot be 
set universally to Isc, the short-circuit current in the excited winding. Rather, LBASE 

can be set equal to Isc only when Isc flows "into the paper" on the right half of the 
transformer cross section. ff the current in the excited winding flows "out of the paper" 
on the right half of the transformer, then LBASE should be set equal to -Isc· For 
example, LBASE = -Isc for each of the short-circuit tests represented in Fig. 5.2, since 
in each case, the current in the excited winding flows "out of the paper." Adopting 
this definition for LBASE means that LBASE flows in the "positive" direction ("into the 
paper" on the right side of the transformer) whether Isc flows in the positive or negative 
( "out of the paper") direction. 

Returning to the discussion of normalization, we can chose a value for .IBASE which 
is both convenient and consistent with the convention shown in Fig. 5.4: 

where 

{ 
Isc if Isc flows in "positive" direction 

LBASE = - Isc if Isc flows in "negative" direction 

The related base for normalizing the field intensity is 

(5.9) 

(5.10) 

(5.11) 

The usefulness of normalizing the field intensity becomes clear if we substitute (5.5) and 
(5.11) into (5.4) 

Nt.f__,_ 

bwin 
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Figure 5.4: Convention adopted for drawing field-intensity diagrams from 
layer currents. (a) Right-hand sides of two transformer cross sections show
ing directions of layer currents. (b) Field-intensity diagrams associated with 
transformer cross sections of (a). 
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Nd,_ 

NElBASE 
(5.12) 

Equation (5.12) allows us to determine the difference between the normalized boundary 
conditions for a layer provided we know the ampere-turns of that layer relative to the 
ampere-turns of the excited winding. 

5.2.4 Calculation of Resistance Values 

Under a short-circuit test, a driving source (usually a sinusoidal voltage source in series 
with a source impedance to limit the current) is applied to a certain jfh winding while 
a certain kth winding is shorted. Depending on the layout of the transformer, the /h 
and the kth windings may be made up of one or more winding layers. Naturally, the 
current density in the winding layers associated with these two windings is non-zero and 
net current flows through them. If the excitation frequency is high enough, any winding 
layer which is "sandwiched" between the winding layers of the jf h and kth windings can 
develop non-zero current-density distribution due to the eddy currents induced from the 
high rate of change of magnetic flux, even though the net current flowing through such 
a winding layer is always equal to zero. An example of a layer with zero net current but 
non-zero current distribution is shown in Fig. 4.25 of Section 4.4.2. Due to the finite 
conductivity of the winding layers, a non-zero current-density distribution implies energy 
dissipated as heat. 

Since measurements of terminal voltages and currents do not reveal the actual current
density distribution, the excitation source applied to the jfh winding can only see an 
aggregate lumped-circuit effect of all of the dissipative loss. As a result, the leakage im
pedance between windings j and k, referred to winding j, is modeled as a resistance R(ik) 

in series with an inductance L(jk)· The resistance R(ik) is used to account for the total 
loss dissipated in the transformer windings while the inductance L(ik) is used to account 
for the total energy stored in the magnetic field in the whole winding structure including 
both the winding layers and the interlayer air gaps. The value of R(ik) is defined so that 
the average loss over one cycle (PR(ik)) developed in this model resistor is equal to the 
total average loss over one cycle (Pn) in all winding layers in the transformer under the 
particular test conditions. 

(5.13) 

where the average powers (PR(ik)) and (Pn) are calculated from the instantaneous power 
loss PR(ik)(t) in the model resistor, and the instantaneous power loss Pn(t) in the trans
former windings, respectively. 

(PR(ik)) = ~ h PR(jk)(t) dt 

(Pn) = ~ h Pn(t) dt 

(5.14) 

(5.15) 
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The symbol Pn(t) is the total loss in all winding layers of a transformer and should not 
be confused with the symbol Pa(t), which stands for the power density at a point. 

Since the resistor R(jk) is referred to the excited winding, the instantaneous current 
flowing through such a model resistor is equal to the current isc(t), the short-circuit 
excitation current. Therefore, 

It can be further assumed that in the case of sinusoidal excitation, 

isc(t) = v'2Isc cos(wt + 0) 

or for a phasor current, 
"(J 

lsc = lsc e3 

(5.16) 

(5.17) 

(5.18) 

Pursuing the usual procedure to compute the average loss in a resistor under sinusoidal 
excitation, the integration in (5.14) is carried out after substituting (5.16) and (5.17), 
yielding 

(PR(jk)) = l}c R(jk) 

From (5.18), l1scl 2 = lsc I'sc = I}c, thus 

(PR(ik)) = 1Iscl2 Rc;1i:) 

(5.19) 

(5.20) 

After finding the average loss (PR(j k)) in the model resistor, we can now focus our 
attention on the computation of (Pn), the total loss in the transformer averaged over 
one cycle. Since the current density in an interlayer air gap is equal to zero, there is no 
power loss in any of these air gaps. In a transformer that is made up of N layers, the 
total instantaneous loss Pn(t) in the whole transformer can be expressed as 

N 

Pn(t) = L Pn(t) (5.21) 
n=l 

where Pn(t) is the instantaneous power loss in the nth winding layer. Substituting (5.21) 
into the right hand side of (5.15), and interchanging the averaging process with the 
summation process, we have 

(5.22) 

The symbol (Pn) is introduced in Section 4.5.11 to represent the loss in the nth winding 
averaged over one period T of excitation 

(5.23) 

1Some of this discussion is presented in Sections 4.5.1, and 4.5.2, but is repeated here for convenience 
and clarity. 
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Then (5.22) can be rewritten as 

N 

(PD)= L(Pn) (5.24) 
n=l 

Hence, the task of computing (PD), the total loss in the transformer averaged over one 
cycle, can be broken down into the computation of the loss in each individual layer 
averaged over one cycle. · 

To find (Pn), the average loss in the nth layer, we need to compute first the instan
taneous loss Pn(t) in this layer. The instantaneous loss in the specified volume is equal 
to 

(5.25) 

where the symbol Vn associated with the integral signs is used to signify that the triple 
integration is carried out over the volume Vn of the nth layer and Pd(t) is the instantaneous 
loss density at an arbitrary point in the specified volume. 

Combining (5.23) and (5.25) yields 

(Pn) = ; l ff ln Pd(t) dv dt (5.26) 

The integration with respect to time and the integration with respect to volume can be 
interchanged to give 

(5.27) 

In Section 4.5.2, the power density averaged over one cycle, i.e., 

(5.28) 

is shown to be related to the phasor of the current density J •r Rewriting ( 4.95) to be 
consistent with the notation discussed in Section 4.6 gives . 

(pd) = ly(X) J.;(x) 
Ueff 

(5.29) 

Substituting (5.28) and (5.29) into (5.27) yields 

(Pn) =ff l .. J.y(Xle~;(x) dv (5.30) 

For the nth layer of the transformer-winding arrangement, the height X varies from zero 
to hcu, the depth y varies from zero to the length of turn for the nth layer f.Tn, and the 
breadth z varies from zero to bwin· Thus, (5.30) can be expanded into 

(5.31) 
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In Section 4.5.2, the symbol (QJ) is defined as the average power dissipated per square 
meter in the y-z plane. To be consistent with Section 4.6, (4.96) can be rewritten as 

(5.32) 

Substituting (5.32) into (5.31), we have 

(5.33) 

Since ( Q J) is not a function of the depth y nor the breadth z, the above double integration 
amounts to a trivial multiplication. The net result is 

(5.34) 

After determining the average loss (Pn) over the n th layer of the transformer winding 
arrangement, we can now return to find the average total loss (Pv) of the transformer. 
Combining (5.24) and (5.34) and using the results in (4.142) for (QJ), the following 
derivation is obtained. 

n=l 

n=l 

j;_ b,.;.t,,. [IJL.(:;.h~)I' { (1+ a 2 + ,82)F1(<l.) - 4aF,(<l.)} L 
bwin t [}\ IHz{X = hcu)l 2 (QHa,,8, .6.))l (5.35) 

=1 d n 

where all of the terms inside the summation depend upon which layer is being considered. 
The skin depth 8 is retained inside the summation because its value depends upon the 
value of the effective conductivity for the layer as shown in (4.129). 

It is worth noting here that the ,8 term in the expression for ( Q'.,) is zero for all of the 
short-circuit tests we are considering in this chapter. Hwe assume that the ampere-turns 
of the two current-carrying windings sum to zero, N;l; = NkL, then in each short-circuit 
test, the currents in the winding layers are either in phase with one another or 180° out 
of phase with one another. This causes the z-directed magnetic-field-intensity phasors at 
the boundaries of each winding layer to be in phase or 180° out of phase with each other. 
When this is the case, Equation (4.49) for (3 evaluates to zero since sin(0x=O - 0x=hcJ· 
We continue to write (Q'.,) as a function of all three variables a,,8 and .6. in order to 
keep the resulting equations as general as possible, but we do not need to consider ,8 in 
the present discussion. 
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We can use the normalization procedures discussed in Section 5.2.3 to relate the 
values of H 15 (X = hcu) in the above expression for (PD) to the short-circuit current in 
the excited winding, lsc, Recalling (5.11), HBASE = NElBASE/bwin, we have 

H ( 
_ h · ) _ JL(X = hcu) ~ bwin H z(X = hcu) -z-N X - cu - -~--~ - __ _.c;..,__ __ ...:.. 

HBASE NElBASE 
(5.36) 

We can solve this expression for Hz(X = hcu) as 

(5.37) 

Using this expression in (5.35) and noting that 

(5.38) 

we get the final expression for the total time-averaged power dissipated in the transformer 
for any short-circuit test condition. 

(5.39) 

Recalling equations (5.13) and (5.20), we can use (5.39) to write R(jk), the apparent 
short-circuit resistance· that represents the losses in the windings of a transformer for 
any short-circuit test, as 

In the above equations, £T, <Teff, 8, IHa-N(X = hcu)I and (Q'.,) must be determined for 
each individual layer. 

5.2.5 Winding-Inductance Calculations 

The calculation of energy stored in the magnetic field in a winding layer from the solution 
for energy stored per square meter (QH) of the layer given in (4.144) follows a very similar 
path to that used in the calculation of power dissipation from (QJ). However, in the 
energy storage case, we must account not only for the energy in the winding layers 
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themselves, but ( also for the energy in the interlayer gap regions. This poses no real 
problem since the phasors of the magnetic field in these gap regions are independent of 
frequency. In this section, we demonstrate a method for calculating the amount of stored 
energy in a winding structure by first calculating the energy stored in the winding layers 
then calculating the energy stored in the gaps. The total energy stored in the entire 
winding structure is then used to determine the apparent inductance Lc;1c) as seen by 
winding j for the (jk) short-circuit test. . 

For an inductance L(jlc) to model the energy-storage behavior of the transformer for 
a given short-circuit test, the average energy stored (WL(jk)} by L(jk) must be equal to 
the total average energy stored by the winding structure (WT}. 

(5.41) 

The total average energy stored by the transformer winding structure (WT} is composed 
of two parts: the average energy stored in the layers of the windings (WL}, and the 
average energy stored in the interlayer gaps (W9 }. 

(5.42) 

The energies (WL(jk)}, (WL}, and (W9 } are determined by averaging over one cycle their 
respective instantaneous quantities WL(jk)(t), Wl(t), and Wg(t). 

(WL(jk)} ~ l WL(jk)(t) dt (5.43) 

; l Wl(t) dt (5.44) 

(5.45) 

5.2.5.1 Energy Stored in the Winding Layers 

In this subsection, we derive the equations necessary to determine (WL}, the average 
energy stored in the layers of the transformer windings. The determination of (W9 }, the 
average energy stored in the interlayer gaps, is deferred until Section 5.2.4.2. Using the 
symbol Wn(t) to represent the instantaneous energy stored in the nth layer of an N-layer 
winding structure, we can state that the instantaneous energy Wl(t) stored in all the 
layers is equal to the sum of the energy stored Wn(t) in each layer. 

N 

Wl(t) = L Wn(t) (5.46) 
n=l 

Taking the time average of each side of (5.46), replacing the left-hand side with (5.44) 
and interchanging the integration and summation in the right-hand side gives 
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(5.47) 

where (Wn) is the average energy storage in the nth layer. 
Recalling from Section 4.5.32 that (wm) represents the average over one period of 

excitation of the energy density at a point, we can calculate (W n) by taking the integral 
of ( wm) over the volume of the specified nth layer 

(5.48) 

Adopting the bounds of integration used in Section 5.2.4, this can be rewritten 

(5.49) 

The innermost integral in (5.49) is calculated in Section 4.5.3 and is equal to (QH), the 
average energy storage per square meter in the y-z plane. Since (QH) is invariant with 
y and z, the integrations with respect to y and z in (5.49) are trivial and 

(5.50) 

Substituting this into (5.47) and using the expression for (QH) given in (4.144) results in 
the total stored energy averaged over one cycle in the N layers of the winding structure. 

N 

(Wt) = I: (W n) 
n=l 

n=l f. bw,nlTn [µoOIH.(: = h=)I' { (1+ <>2 + /J2)Fs(.:l.) - 4aF,(.:l.)} L 
N 

bwi;µo I: [tT81Hz(X = hcu)l2 (Qif(a,,8,~))L (5.51) 
n=l 

where all of the terms inside the final summation depend on which layer is being con
sidered. As is the case for the expression for (Q'.,), the value of ,8 in the expression for 
(Qi[) above is equal to zero for all of the short-circuit tests considered here. 

Again as in (5.36) and (5.37), we write Hz(X = hcu) = Hz-N(X = hcu)HBASE with 
HBASE = NE1BASE/bwin and l1BASEl 2 = l1scl 2 to yield 

(Wt) = bwi;µo N¾H:~cl2 t [tT81Hz-N(X = hcu)l2 (Qif(a,,8, ~)) L 
wan n=l 

2 Some of this discussion is also presented in Sections 4.5.1, and 4.5.3, but is repeated here for conve
nience and clarity. 



146 Duke University Section 5.2.5 

(5.52) 

5.2.5.2 Energy Stored in the Gaps Between the Winding Layers 

The determination of the energy stored in the interlayer gaps of a transformer winding 
follows much the same trail as is presented in Section 5.2.5.1 for the layer energy. The 
total instantaneous energy stored in all the gaps W9 (t) is composed of the energies W9n (t) 
stored in each of the (N-1) interlayer gaps of the N-layer winding. Likewise, the total 
gap energy averaged over one cycle (W9) is composed of the individual, averaged, gap 
energies (W9n). Algebraically this can be expressed as 

N-1 

Wg(t) - L Wgn(t) (5.53) 
n=l 

N-1 

(Wg) - L (Wgn} (5.54) 
n=l 

The summations in (5.53) and (5.54) include only the (N -1) gaps between any two 
adjacent layers of the winding structure. Thus, gap one is located between layers one 
and two, and gap (N-1) is located between layers (N-1) and N. Neither the gap between 
the the innermost layer and the core ( the "0th" gap), nor the gap between the outermost 
layer and the core (the N th gap) is of interest when determining energy storage, since 
the magnetic field intensity in these two gaps is assumed to be zero at all times.3 

We continue by expressing the total instantaneous energy W9n (t) in gap n in terms 
of the instantaneous magnetic energy density wm(t) in the gap. 

(5.55) 

Taking the time average of both sides of (5.55) and reversing the order of integration 
gives 

(5.56) 

3 See Section 5.2.1. 



Section 5.2.5 Modeling Multiwinding Transformers 147 

Each gap extends from zero to the height of the gap 9n in the x-direction, from zero 
to the "length-of-turn" for the gap £9n in the y-direction, and from zero to bwin in the 
z-direction. Inserting these limits of integration in (5.56) gives 

f bwin {£9n [9n 
(W9J = lo lo lo (wm) dxdydz (5.57) 

From (4.115), the averaged energy-storage density (wm) at any point x where the 
magnetic-field-intensity phasor is equal to Hz(x) is given by 

(5.58) 

Examining the magnetic-field-intensity diagrams of Fig. 5.2 we see that, for any excita
tion of the winding structure, the magnetic field intensity in any gap is invariant in the 
x-dimension and that the value of the field-intensity phasor H 9 in the nth gap is equal 
to Hz(x = hcu) of the nth layer and to Hz(x = 0) of the (n + l)fh layer. As is discussed 
in Section 3.1.3, H 9n depends only on the net ampere-turns of the conducting layers and 
is independent of frequency. Substituting H 

9
n into (5.58), we can express the average 

energy density in the gap as 

µ H H* µ IH 12 
( ) _ O-gn-9n _ 0 -9n 
Wm --~2-~---2~- (5.59) 

Since this expression for ( Wm) is invariant in all three directions, the integrations in 
(5.57) are trivial. 

ff fvn (wm) dv = fobwin folgn fo9n µol1;9n 12 dx dy dz 

µo IJign 1
2 

V, l 
2 

x oume 

µo IJign l2bwinlgn9n 

2 
(5.60) 

From (5.54), we know that the total amount of gap energy is the sum of the individual 
gap energies, so, for a winding structure with N layers and ( N - 1) interlayer gaps, the 
total gap energy averaged over one cycle is 

n=l 

b N-1 
µo win '°' IH l2£ 

2 L..., =-fin gn9n 
n=l 

µobwin N}llscl
2 

~
1 IH l2£ 

2 b2. L..., -gn-N gn9n 
win n=l 
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(5.61) 

where the magnetic field intensity has been normalized to the value of H BASE used 
earlier. 

5.2.5.3 Total Stored Energy in a Transformer 

As discussed in the introductory text in Section 5.2.5.1, the total energy stored, averaged 
over one cycle, in the transformer winding for any short-circuit test is designated (WT), 
and is given by the sum of the average energy (Wi) in the layers and the average energy 
(W9) in the gaps between the layers. Combining equations (5.52) and (5.61) 

(WT) ~o Nji::cl2 

{ ~ f, [tTSIHz-N(X = hcu)l2 (Qk(a,,B,~))L 

+ E [tggjHg-N1 2L} 
(5.62) 

5.2.5.4 The Short-Circuit Inductance 

Now that an expression for (WT) exists, we need to determine an expression for (WL(ik)) 
on the left-hand side of equation (5.41) which is the average energy stored in the apparent 
short-circuit inductance. 

We know that w(t) = (1/2)Li2(t) is the instantaneous energy stored in any induc
tor L. Assuming that the inductor L(;A:) models the energy stored in the transformer 
windings for short-circuit test (jk), the instantaneous current fl.owing through the model 
inductor is equal to the short-circuit current isc(t) in the excited winding since L(ik) is 
referred to winding j. 

(5.63) 

As is given in equations (5.17) and (5.18), for the case of sinusoidal excitation the in
stantaneous exciting current can be expressed as 

isc(t) 

lsc 

- v'2Isc cos(wt + 0) 
·s lsce' 

(5.64) 

(5.65) 
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Taking the average over one cycle of WL(ik)(t) using equation (5.43) after substituting 
(5.63) in for WL(ik)(t) and (5.64) in for isc(t), J:ields 

{WL(ik)) = ½lsc
2 

L(ik) (5.66) 

From (5.65), llscl 2 = lsc 2
, thus 

(5.67) 

Substituting this expression into the left-hand side of (5.41) and rearranging lets us 
relate the average energy stored in the transformer winding structure to the short-circuit 
leakage inductance L(ik) between the excited and shorted windings 

µL:j { ½ f [tTSIHz-N(X = hcu)l 2 (Q~(a,,8,~))L 

+ f. [tggJH g-N1 2L} 
where {WT) is defined by (5.62). 

5.2.6 Short-Circuit Impedance Formula 

(5.68) 

We can combine the results for the resistance and inductance calculations above to write 
an expression for the impedance between any two windings of a transformer. The short
circuit impedance Z(ik) between windings j and k referred to winding j is in general, 

(5.69) 

where R(ik) is the short-circuit resistance given in (5.40) that corresponds to the power 
dissipation in the conductors and L(ik) is the short-circuit leakage inductance related to 
the energy stored in the transformer winding space as given above in (5.68). For a four
winding transformer there are six different short-circuit impedances to calculate. The 
results of these calculations can be used in place of measured short-circuit impedances 
to determine values for the six admittance links of the circuit shown in Fig. 7.9. The 
details of such a development are presented in Chapter 7 and are built upon the work in 
[1,13,18]. The six calculated short-circuit impedances can also be used to determine the 
six impedances used in the coupled-secondaries equivalent circuit discussed in Chapter 8. 
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5.2. 7 Relating Field Solutions to Winding Layout 

In order to compute an actual numerical value for the leakage impedance between any 
two windings, we must know the specific layout of the winding layers. The expressions 
developed above depend only on the boundary conditions of the magnetic field intensity 
that exist for each winding layer and not on how those conditions arise. In order to use 
these expressions, however, we must in fact determine values for the various boundary 
conditions. 

A simple algorithm for calculating the power dissipation and energy storage of a wind
ing for sinusoidal excitation which includes the determination of the various boundary 
conditions is as follows: 

1. Describe in detail the geometry of the transformer and its windings including im
portant mechanical parameters such as core-window breadth. Decide upon oper
ating points such as excitation frequency and winding-temperature rise. Calculate 
necessary parameters such as skin depth and layer porosity. 4 

2. Given the positions of the layers of the respective windings of the transformer 
and the excitation conditions in these layers-short-circuit current in this case-
construct the low-frequency field-intensity diagram for the transformer as detailed 
in Section 3.1.2. 

3. From this diagram and (5.12), determine the normalized values of the magnetic 
field intensity at all interlayer-gap positions. 

4. If desired, determine the losses in the transformer windings using the boundary 
conditions determined above and equation (5.39). 

5. If desired, determine the energy stored in the winding structure from the above 
determined boundary conditions and (5.62). 

6. Use the boundary conditions determined above to compute the apparent short
circuit resistance and the apparent short-circuit inductance using (5.40) and (5.68) 
respectively. 

7. Use (5.69) to determine the leakage impedance between the windings of interest. 

The algorithm given above is straightforward enough to be easily implemented with 
a computer for any winding structure. In order to expand and clarify the procedure 
for determining R(ik) and L(ik), we present in the next chapter a· detailed example 
calculation of these quantities and sample plots of how they vary with frequency for a 
sample winding structure. 

The present chapter is based upon short-circuit tests in which current flows in only 
two windings of the transformer, and those currents are of equal but opposite ampere
turns. Under these conditions, (3 = 0 always, since the phase difference of the magnetic 

4 A more complete description of this step is given in Sections 6.1.1, 6.1.2, and 6.1.3. 
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field across a layer is always 0° or 180°. This excitation condition gives us the short
circuit impedances which are used to determine the components of the admittance-link 
circuit of Chapter 7 and the coupled-secondaries circuit of Chapter 8. Yet, the equations 
developed above for the short-circuit impedances require only that the specific layout of 
the windings and the boundary conditions of the field intensity for each layer be known. 
Because of this, equations (5;39) and {5.62) for (PD} and (WT}, respectively, are given as 
general functions of a:, f3 and~- Therefore, equations (5.40) and (5.68) are applicable to 
any winding excitation, not just the short-circuit conditions assumed in this chapter, and 
represent the resistance and inductance seen at winding j due to the field distribution 
in the transformer windings when current flows in winding j. 



152 Duke University Section 5.2. 7 

This page has been left blank intentionally. 



s
® 

Nothing Compares

www.ridleyworks.com 

� RIDlEY ENGINEERING 
www.ridleyengineering.CXJlll 

www.ridleyworks.com


™

www.ridleyworks.com


- ~ -
-- --- - ----- - ---- ----

Chapter 6 

Calculation and Verification of 
Short-Circuit Impedances 

In this chapter, we present both calculated and measured data for R(ik) and L(ik) for 
an example EE-core transformer and an example pot-core transformer. The winding 
structure for both transformers under analysis corresponds to that in Fig. 5.2(a). Sec
tion 6.1 contains a detailed example wherein the values of R(i3) and L(i3) at 100 kHz are 
calculated in a step-by-step fashion for the EE-core transformer. Section 6.2 contains 
computer-generated plots of R(ik) and L(ik) versus frequency for the EE-core transformer 
under the six short-circuit tests of Fig. 5.2(c). In Section 6.3 we discuss how short-circuit 
tests were performed on the actual transformers, and compare the measured data for 
the EE-core transformer with the results of the calculations in Section 6.2. Also in Sec
tion 6.3, we compare measured and calculated values of short-circuit impedances for the 
pot-core transformer, and we discuss the validity of the predicted impedance values. 

6.1 STEP-BY-STEP NUMERICAL EXAMPLE OF 
DETERMINING R(J'k) AND L(jk) 

In this section, the reader is guided through a complete numerical determination of the 
short-circuit resistance R(ik) and inductance L(ik) for an example EE-core transformer 
at a specified frequency for a given de field-intensity diagram. Through this example, 
we tie together the various issues presented throughout this report: modeling a layer of 
conducting wires as a foil conductor as presented in Section 2.2; determining the average 
normalized power dissipation in a layer (Q'.J) and the average normalized energy stored 
in a layer (Qi[) as discussed in Sections 4.5.2 and 4.5.3, respectively; and determining 
the short-circuit resistance R(ik) and inductance L(ik) from (Q'.J) and (Q~), discussed 
in Sections 5.2.4 and 5.2.5. This numerical example should help explain the process of 
calculating the short-circuit impedances so that the reader may do similar hand cal
culations or automate the calculation procedure by programming a computer with the 
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pertinent equations. 
As with any calculations, the precision of the results presented below depends upon 

the precision of the input data and the calculation technique. Data culled from manufac
turer's data books are only as accurate and precise as the manufacturer's specifications. 
For the most part, calculation results presented in this numerical example are rounded 
to reflect the number of accurate digits. When the calculations presented below were 
performed, however, intermediate results were stored in calculator memory for use in 
subsequent calculations. Therefore, data actually used for these calculations was of 
higher resolution than that of the presented intermediate results. If the reader chooses 
to replicate these calculations using the provided data, some variation in the last digit of 
the results may be seen. This should not effect the final calculation of the short-circuit 
resistance and inductance since they have been rounded to only two significant digits. 

6.1.1 Step 1-Collect Known Quantities 

To begin the analysis, we must first collect the needed mechanical and electrical param
eters which are known from the transformer design. It is assumed that the transformer 
has already been wound, or that the transformer design is detailed enough to provide all 
the necessary information. The parameters of initial interest are: 

• General layout of transformer including number of layers, and the relative positions 
and interconnections of the layers 

• Size, type and number of conductors in each layer, and the total number of turns 
in the excited winding 

• Frequency of interest 

• Mechanical dimensions of the core and bobbin 

• Resistivity and its thermal coefficient for the wires, and the temperature of the 
windings 

• Low-frequency magnetic-field-intensity diagram for the chosen short-circuit test, if 
known 

• Thickness of interlayer insulation or shields 

In this example, we use an eight-layer four-winding transformer1 with a cross-section 
similar to that shown in Fig. 6.1. Each layer is composed of N,. = 13 turns of n 8 = 2 
paralleled twenty-gauge wires, amounting to Ne = 26 insulated wires per layer. Each 
winding has twenty-six turns and is composed of two layers of thirteen turns each. The 
six possible short-circuit low-frequency magnetic-field-intensity diagrams for this wind
ing arrangement are shown in Fig. 5.2(b). For this numerical example, we develop in 
detail only the (13) case-winding one excited and winding three shorted-as is shown 
in Fig. 6.2. Derivation of low-frequency field-intensity diagrams for short-circuit tests 

1Vekatraman's transformer number W835-2, alias Duke's number ec03b03. 
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Modeling Multiwinding Transformers 

fish paper 
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Figure 6.1: Cross-section of an eight-layer four-winding EE-core transformer 
showing its relevant dimensions. Displayed layers are composed of seven 
turns of two paralleled wires for a total of 14 conductors per layer. In the 
actual transformer under analysis, there are 13 turns of two paralleled wires 
for a total of 26 conductors per layer. 
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Figure 6.2: For short-circuit test (13), (a) transformer cross section, (b) 
low-frequency field-intensity diagram, (c) interconnections among the wind
ing layers and the excitation source. 

is discussed in Section 5.2.2. Calculation of the normalized field-intensity boundary 
conditions Hz-N(O) and Hz-N(hcu) for each layer is deferred until Section 6.1.3. 

Table 6.1 contains a summary of the initial parameters which are discussed in this 
section and are needed for this numerical example. Looking at Table 6.1, we see that for 
the sample EE-core transformer, the thickness ht of the fish paper insulation separating 
the windings is 5 mil or 1.27 x 10-4 m. An "additional gap" 9a is introduced later to 
account for overlap of the fish-paper insulation, tape and unevenness of the windings. A 
frequency f of 100 kHz is used for this example. The chosen wire size, 20 AWG, has a 
copper area2 of 1024 circular mils (c.m.) and an area3 with heavy insulation of 1246 c.m. 
Using the conversion factor 1 c.m. = 5.067 x 10- 10 m2 , these areas can be rewritten in SI 
units as shown in Table 6.1. If different layers employ different wire sizes, then the areas 
of each wire size should be noted. The center-leg dimensions of the chosen bobbin were 
measured from other bobbins of the same type and found to be Xbob = 1.45 x 10-2 m 
and Ybob = 1.83 X 10-2 m; Xbob and Ybob are defined in Fig. 6.4. The chosen EE core has 
a window breadth4 bwin of 3.02 X 10-2 m. For completeness, the resistivity Pcu,20oc of 
annealed copper wire at 20 °C and its temperature coefficient of resistivity KT, which 
are given in the Glossary of Symbols, are included in Table 6.1 along with the chosen 

2Magnetics, Inc., Design Manual featuring Tape Wound Cores, Publication TWC-300R, pp. 64. 
3 lbid. 
'Stackpole Corp. Stackpole Cermag Products, Bulletin 59-107, pp. 17. Core Material: 24B. 

Core Number: 50-0348. 
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Table 6.1: Initial Collection of Mechanical and Electrical Parameters 

II PM~eter I Value 

II 
Nt 13 ( all layers) 

na 2 ( all layers) 

Ne 26 ( all layers) 
AWG 20 (all layers) 

Acu,20AWG 1024 c.m. = 5.189 x 10-7 m2 { all layers) 

Ao,20AWG 1246 c.m. = 6.313 x 10-7 m2 ( all layers) 
ht 5 mil = 1.27 x 10-4 m 

·xbob 1.45 X 10-2 m 

Ybob 1.83 X 10-2 m 

bwin 2(0.595 in) = 3.02 x 10-2 m 

f 100 kHz 
w 6.28 X 105 

Pcu,20°c 1. 7241 X 10-8 fl-m 

KT 3.93 X 10- 11 fl-m/C 0 

T 60 °C 

winding operating temperature T. 

6.1.2 Step 2-Determine the Related Mechanical Properties 

After collecting the initial list of electrical and mechanical parameters associated with 
the transformer under analysis, certain other parameters must be determined. In this 
section, we discuss the mechanical parameters to be determined. These are: 

• The diameters of the wires with and without insulation 

• The height hcu of each of the foil layers used to model the layers of wire conductors 

• The layer porosity for each layer 

• The heights of the gaps between the layers 

• The mean length of each layer and each interlayer gap 

The diameter dcu of the copper in each conductor and the diameter d0 of the wire with 
insulation can be determined from their associated areas by the formula d = ✓ 4 A/ 1r. 

d - ✓4Acu _ 
cu - -

7r 

_4(.:....5_.1_8_9 _x_1_0_-
1
....:..) = 8.128 x 10-4 m 

7r 
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d _~Ao_ o- -
11" 

_4(~6_.3_1_3_x_l_0_-7-'-) = 8_966 X 10_4 m 
11" 

Section 6.1.2 

Since in Section 2.2 the round wire conductors are initially modeled as square conductors 
of equal cross-sectional area, we can determine both the height hcu and the breadth bcu 
of the equivalent square conductors using (2.3) 

hcu = bcu = ~ dcu = ~ (8.128 X 10-4
) = 7.203 X 10-4 m 

Note that hcu is also the height of the "stretched" foil conductor finally used to model a 
layer of round-wire conductors. As discussed in Sections 2.2.1, the foil conductors have 
an associated layer porosity which results from the "stretching" process. The value of 
layer porosity for each layer can be determined using (2.4) and the above calculated 
value of bcu, 

_ Neb cu _ 26(7 .203 X 10-4) _ 0 
62 T/ - . - -2 - . 0 

bwin 3.02 X 10 

If wire size or conductor type differ among the winding layers, values of dcu, d0 , bcu, hcu 
and r, must be determined for each layer. If the number of turns per layer differs, r, must 
be determined for each layer. 

If round-wire windings are wound as tightly as possible ~ithout permitting wires 
in layer ( n + 1) to slip into the notches between the wires in layer n, in other words, 
if the winding is "square" as represented in Fig. 1.l(a), then the minimum center-to
center distance between adjacent layers n and (n + 1) is equal to the sum of the radii 
of the two layers. For layers in a square winding which are separated by a layer of fish 
paper insulation, the minimum center-to-center separation between the layers is equal 
to the sum of the radii of the two layers and the thickness of the fish paper. For our 
particular transformer, it is assumed that the windings are "square," so the minimum 
possible center-to-center distance between adjacent layers, such as between layers one 
and two, is equal to d0 , since all the wires have the same radii. The minimum possible 
center-to-center distance between layers separated by fish paper, such as between layers 
two and three, is (d0 + ht)-

In an actual transformer, it is unlikely that the separation between the winding layers 
will be equal to the minimum possible. Whether it is due to the overlapping of the ends 
of the fish paper insulation, or to loosely wound layers, some additional gap between the 
layers is generally present. For a transformer which is still being designed, an estimation 
must be made of the amount of this additional gap. For a transformer which is being 
wound with this analysis in mind, exact measurements can be made of the buildup after 
each layer of wires or fish paper is wound. To analyze an already existent transformer 
winding, the additional interlayer gaps can be approximated by comparing the actual 
buildup of the winding to the minimum possible value. For our particular winding, the 
minimum possible outside measurement Yo,min is equal to the number of winding layers 
multiplied by d0 the outer diameter of the round wire used in each layer, plus the number 
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of layers of fish paper insulation used multiplied by ht the thickness of the insulation, 
plus Ybob the y-direction dimension of the bobbin, or algebraically, 

Yo,min l6d0 + 8ht + Yiiob . 

16(8.966 X 10-4) + 8(1.27 X 10-4) + 1.83 X 10-2 

3.366 X 10-2 m 

It is recognized · that a result with four-digit precision cannot be obtained in this calcu
lation because of the imprecision of ht and Ybob, but the result is treated as exact for 
convenience in subsequent calculations. 

When the actual buildup of the windings in they-direction was measured, however, a 
value of Yo,meas = 3.423 X 10-2 m was obtained. Clearly some additional gaps must exist 
between the layers. For the transformer being analyzed, we assume that the difference 
between Yo,meas and Yo,min is a distributed gap appearing in equal portions in all 24 
possible locations, i.e., in the eight spaces between two winding layers, the 14 spaces 
between a winding layer and a layer of insulation, and the two spaces between a winding 
layer and the bobbin. The value of the approximate additional gap 9a appearing in each 
of these locations is 

3.423 X 10-2 - 3.366 X 10-2 -5 
9a = 

24 
= 2.4 X 10 m 

Using this value of 9a and referring to Fig. 6.3, the values of the intrasection gaps 9intraa 

and the intersection gaps 9intera, defined in Section 2.2.1, are 

9intraa do - hcu + 9a 

8.966 X 10-4 - 7.203 X 10-4 + 2.4 X 10-5 

2.0 X 10-4 m 

9intera do - hcu + ht + 2ga 

8.966 X 10-4 - 7.203 X 10-4 + 1.27 X 10-4 + 2(2.4 X 10-5) 

3.5 X 10-4 m 

The last mechanical parameters that we must determine are the length-of-turn lTn 

for each layer of the winding, and the length l 9n of each interlayer gap. Although it 
is common to use one average turn length for the entire winding, in this example, we 
calculate individual lengths for each layer and each interlayer gap. 

The model which is adopted to determine the length of an individual layer wound on 
a rectangular bobbin is shown in Fig. 6.4. We assume that each corner forms a quarter
circle and that the radii Tn are the distances from the corner of the bobbin to the centers 
of the n layers. For the first layer, 

r1 = 9a + ~ = 2.4 X 10-5 + ½(8.966 X 10-4
) 
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equivalent 
foil conductor 

paper 
insulation 

Figure 6.3: Detailed drawing of modeled layers showing the intrasection gaps 
9intrw and the intersection gaps 9intm. 
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4.7 X 10-4 m 

i.T1 2(Xbob + Ybob) + 21rr1 

2 (1.45 X 10-2 + 1.83 X 10-2) + 2,r (4.7 X 10-4) 

6.9 X 10-2 m 

Since the term 2(Xbob + Yiiob) occurs in each i.Tn, we note that 2(Xbob + Yiiob) = 6.56 X 

10-2 m. Continuing, 

r2 r1 + 9a + d0 = 4.7 X 10-4 + 2.4 X 10-5 + 8.966 X 10-4 

1.4 X 10-3 m 

i.T2 - 2(Xbob + Ybob) + 21rr2 = 6.56 X 10-2 + 2,r(l.4 X 10-3) 

7.4 X 10-2 m 

r3 r2 + 2(ga) + ht + d0 

- 1.4 X 10-3 + 2(2.4 X 10-5) + 1.27 X 10-4 + 8.966 X 10-4 

2.5 X 10-3 m · 

i.T3 2(Xbob + Yiiob) + 21rr3 = 6.56 X 10-2 + 2,r(2.5 X 10-3
) 

8.1 X 10-2 m 

Calculations continue in the same vein for n = 4, 5, ... , 8 with 

for n = 2,4,6,8 
for n = 3,5, 7 

for all n 

The complete results of these calculation for the sample transformer are presented in 
Table 6.2. 

The lengths of the interlayer gaps are calculated using the formuiae 

(6.1) 

lgn = 2(Xbob + Ybob) + 21rrgn (6.2) 

For the case of d0 ,n = do,(n+l) for all n, (6.2) degenerates to 

lgn = ½ [i.Tn + lT(n+l)] 
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Table 6.2: Calculated Mechanical Parameters 

II Symbru Value 

II 
d.,. 8.128 X 10 ·• m ( all layers) 
do 8.966xl0-• m ( all layers) 
h ... 7.203x10-• m ( all layers) 
b.,. 7.203xlo-• m (all conductors) 

fl 0.620 ( all layers) 
g,. 2.4x 10-" m 

Uintra, 2.0x 10-• m 

ginter• 3.5 xlO • m 

Symbol Layer Number 
1 2 3 4 I 5 6 7 8 

r 4.7x 10- 6.4 X 10- 7.4 X 10-" 

f.T 6.9 X 10- l.06xl0- 1 1.12x10- 1 

Symbol Gap Number 
1 2 3 I 4 I 5 6 7 

g 2.ox10- 2.0x 10-
lg 7.1 X 10- 1.1 X 10-
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The first interlayer gap of interest is 91 the gap in between layers £1 and £2. Gaps which 
appear outside the winding area are not of interest, so for an eight-layer transformer 
only seven interlayer gaps are analyzed. The calculation results for the various values of 
£9,,. appear in Table 6.2. 

Often it is assumed that one average turn length can be used for the entire winding. 
For the example transformer, this assumJ)tion yields a value of lTn. = £9,,. = lT,atJg = 
9.0 x 10-2 m. This value is determined by computing the average of the lengths-of-turn 
for the eight layers or the seven interlayer gaps given in Table 6.2. 

This value can also be calculated by averaging the radii r,,. of Table 6.2 and using the 
averaged radius in (6.2). Although easier to use, we expect that use of this average length 
will cause error in calculating Rc13) and L(la) since the (13) short-circuit test involves 
only the inner six layers and not the entire winding space. More is said about this and 
other possible contributors of calculation error in Section 6.3.3. 

6.1.3 Step 3-Determine the Electrical and Magnetic Properties 

Now that we have determined all the necessary mechanical specifications for the trans
former under analysis, we must determine several electrical and magnetic properties 
before finally solving the fields problem and determining the short-circuit resistance and 
inductance. The electrical and magnetic parameters which need to be determined are: 

• Conductivity of the wire at the expected operating temperature 

• Effective conductivity of the "stretched" foil conductors 

• Skin depth and the height of the equivalent foil conductors in skin depths 

• Normalized magnetic-field-intensity boundary conditions 

• The phasor boundary-condition ratio r = a + j f3 

To calculate the conductivity of an annealed copper wire at the expected temperature 
of 60 °C we use the equation and constants from [22, page E-88]. 

Pcu,T 

Pcu,eo0 c 

Pcu,20°c + KT(T - 20 °C) 

1.7241 X 10-8 + 3.93 X 10-ll (60 - 20) 

1.88 X 10-8 0-m 

1 --- = 5.32 x 107 S/m 
Pcu,eo0 c 



Section 6.1.3 Modeling Multiwinding Transformers 165 

Table 6.3: Calculated Electrical and Magnetic Properties 

II 
Symbol Value 

II 
O'cu,60°C 5.32 x 107 S/m ( all layers) 

O'eff 3.29 X 10' S/m ( all layers) 
8 2.77 X 10-4 m ( all layers) 
.6. 2.60 (all layers) 

II 
Symbol ·If--1 ---.---2 --.---3---,---,4,--L_alr-e--:r 5=---~-=--5 --.--=7--,---:::g-----nll 

Id I BASE -1 -1 0 0 1 1 0 0 

Hz-N(0) 0 0.5 1 1 1 0.5 0 0 

Hz-N(hcu) 0.5 1 1 1 0.5 0 0 0 

H z-N(X = 0) 0 0.5 1 1 0.5 0 0 0 

H z-N(X = hcu) 0.5 1 1 1 1 0.5 0 0 
Q'. 0 0.5 1 1 0.5 0 - -

II 
Symbol Gap 

1 2 4 5 6 7 II 
II Hg-N 0.5 1 1 1 0.5 0 0 II 

The effective conductivity O'eJ! of the foil conductors which model the layers of con
ducting wire is determined using the equation O'eJ! = TJO'cu• For the example transformer, 
the layer porosity TJ is the same for all eight layers so each layer has the same effective 
conductivity 

O'eJ! = 0.620 ( 5.32 X 107
) = 3.29 X 107 S/m 

Table 6.3 contains a recapitulation of the calculated results presented in this section. 
Once we have the effective conductivity, we can calculate the skin depth for the foil 
conductors using equation (4.129). 

8 ✓ wµ:Ueff = 
2 

(6.28 X 105)(4,r X 10-7)(3.29 X 107) 

2.77 X 10-4 m 
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Using the definition given in ( 4.137) and the information already at hand, we can calcu
late the height of each foil conductor in skin depths. 

A hcu 7 .203 X 10-4 
L..).--------260 - S - 2. 77 X lQ-4 - . 

Note that if the different layers of the transformer wer.e composed of different wire types 
or sizes, or had different numbers of turns, then values of O'eif, S and A would have to be 
determined for each layer. 

Figure 6.2, (5.10), and (5.12) are used to determine the normalized field-intensity 
boundary conditions, Hzn-N(0) and Hzn-N(hcu), for each of the eight layers, and the 
normalized field intensity, J4n-N, for each of the seven interlayer gaps. Examining 
Fig. 6.2, we see that layers one and two constitute the excited winding and layers five 
and six constitute the shorted winding. Thus, 

L.1 
La 
L.s 
Ls 

L2 
fu 
Ls 
l,_g 

Isc 
0 

-Isc 
0 

From Fig. 6.2(a), it is clear that 1,_1 = Isc flows in the negative direction ("out of the 
paper"), so for this short-circuit test 

LBASE = -Isc 

per the definition in (5.10). For layer one, N1.1 = 13 while NE = 26, so (5.12) becomes 

As discussed in Section 5.2.1, H zi-N(0) = 0 for layer one, so H zi-N(hcu) = 0.5. Since 
the field intensity remains constant in the interlayer gaps, 

Applying (5.12} to layer two, which also belongs to the excited winding, gives 

05- 13(lsc) 
· 26 (-Isc) 

1.0 

The ratio L./ LBASE and the boundary conditions for all eight layers plus the normalized 
field-intensity values for the seven interlayer gaps are presented in Table 6.3. Because 
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the layer currents are either in phase or 180° out of phase with LBASE, the values in 
Table 6.3 are presented as signed real numbers, rather than as complex numbers. 

In Table 6.3, H ;.-N(O) represents the inner boundary of each winding layer and 
Hz-N(hcu) represents the outer boundary as the winding space is traversed radially. 
Adopting the change of reference from x to X proposed in equation (4.132), we can also 
write the boundary values H z-N(X = 0) and H z-N(X = hcu) for the winding layers. 
These, too, are given in Table 6.3. 

Having collected the boundary conditions Hz-N(X = 0) and Hz-N(X = hcu), we can 
now determine the phasor boundary condition ratio r for the foil-conductor layers. From 
(4.133), the definition of this ratio is 

r ll.z(X = 0) 
Ha(X = hcu) 

a.+ j{J 

IL-N(x = o) 
H z-N(x = hcu) 

As is discussed on page 142, /3 = 0 for short-circuit tests such as the (13) test being 
analyzed. Using this we can determine o. for the same short-circuit tests. 

JL(X = 0) H z-N(X = 0) a.--~--~------~ 
- H z(x = hcu) - IL-N(x = hcu) 

(6.3) 

When a layer has both boundary conditions equal to zero, then, H.a(x) is zero 
throughout the layer as (4.130) shows. Such a layer is inactive and stores no energy. 
Likewise, when both boundary conditions are zero, J 11(x) is zero throughout the layer as 
(4.131) shows, and the layer dissipates no power. Equations (4.134) and (4.135), which 
give Hz(X) and J 11(X) in terms of o. and /3, do not apply when Ha-N(X = 0) = Ha-N(X = 
hcu) = 0. No attempt should be made to determine the energy storage or power dissipa
tion in such layers using the methods presented in this and subsequent sections of this 
example. 

Since layers seven and eight have zero boundary conditions on both sides, the value 
of o. is undefined for these layers and a dash is entered in the table. Continuing on with 
the boundary conditions given in Table 6.3 for layers one through six, (6.3) yields values 
of o. for these layers as 

0/(0.5) 
(0.5)/1 

1/1 

0 
0.5 
1 

6.1.4 Step 4-Determine Short-Circuit Resistance and Inductance 

The calculation of R(ik) and L(ik) now follows these steps: 

• For each layer having at least one nonzero boundary condition, determine F1(~), 
F2(~), F3(~) and F4(~). 

• For the same layers, calculate (Q~) and (Qk-)-
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• Evaluate the terms inside the summations of the formulae for R(ik) and L(ik), 

(5.40) and (5.68), respectively. 

• Using (5.40) and (5.68), carry out the summations and complete the calculations 
for R(ik) and L(ik). 

Using the value of .6. given in Table 6.3 for all the excited layers at 100 kHz, values 
of F1(.6.), F2(.6.), Fs(.6.) and F4(.6.) can be determined using equations (4.138), (4.139), 
(4.140) and (4.141), respectively. Substituting .6. = 2.60 into (4.138) gives 

F ( 
A) sinh 2.6. + sin 2.6. sinh 2(2.60) + sin 2(2.60) 

1 L.l. = ------ = ---'----'-----'---'-- = 0.995 
cash 2.6. - cos 2.6. cash 2(2.60) - cos 2(2.60) 

and into (4.139) gives 

From (4.140) we get 

and from (4.141) 

sinh .6. cos .6. + cash .6. sin .6. 
cash 2.6. - cos 2.6. 

sinh(2.60) cos(2.60) + cosh(2.60) sin(2.60) _2 
( ) ( ) = -2.49 X 10 

cash 2 2.60 - cos 2 2.60 

z;, ( A) sinh 2(2.60) - sin 2(2.60) 
L' 3 L.l. = ---'------'-----'---'-- = 1.01 

cash 2(2.60) - cos 2(2.60) 

F ( 
A) sinh(2.60) cos(2.60) - cosh(2.60) sin(2.60) 

4 = = -------------~ = -0.103 
cash 2(2.60) - cos 2(2.60) 

Since the layers are composed of identical numbers of turns and wire size, these four 
functions have the same values for all six layers. If the composition of the layers differs, 
individual values of F1(.6.), F2(.6.), Fs(.6.) and F4(.6.) must be calculated for each layer. 

F1(.6.), F2(.6.) and the values of a calculated in Section 6.1.3 are substituted into 
(4.143) to determine (Q'.,-), the normalized power dissipation for each layer. For layer 
one with (3 = 0, ( 4.143) yields -

and for layer two 

(Q'.,-) (1 + a:2 + (32)F1(.6.) - 4a:F2(.6.) 

(1 + 02 + 02)(0.995) - 4(0)(-2.49 X 10-2) 

0.995 

(Q'.,-) (1 + 0.52 + 02)(0.995) - 4(0.5)(-2.49 X 10-2) 

1.29 
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Table 6.4: Intermediate Results in the Numerical Example 

II 
Quantity Layer 

1 2 3 I 4 5 6 

F1 (~) 0.995 ( same for all layers) 
F2(~) 2.49 X 10 ·• ( same for all layers) 
F3(~) 1.01 ( same for all layers) 
F4(~) 0.103 (same for all layers) 
(Q'.,) 0.995 1.29 2.09 2.09 1.29 0.995 
(Q~) 1.01 1.47 2.44 2.44 1.47 1.01 

lTjH cr,J2
{Q~~ 1.87xl0-6 l.05xl0- 6 1.85 X 10-5 l.99X 10-6 l.33X 10-6 2.71 X 10-G 

<Teff6 
lT6IH r-N l2 (Q~) 4.82x 10 ' 6 3.01 X 10-" 5.47xl0 " 5.88x 10 " 3,83x 10 v 6.92 X 10 6 

II 
Quantity 

I 
gap 

II 1 I 2 I 3 I 4 I 5 

II gl11JHrcNJ
2 I 3.51x10 C I 2.73Xl0 1. I 1.68 x 10 !, I 3.16x10 

l, I 4.82Xl0 
C II 

The values of ( Q'.,) for all six layers are given in Table 6.4. 
F3(.6.), F4(.6.) and the values of o calculated in Section 6.1.3 are substituted into 

(4.145) to determine (Q11), the normalized energy storage of each ·layer. For layer one, 
(4.145) becomes 

and for layer two, . 

(Qk) (1 + o 2 + tf)F3(.6.) - 4aF4(.6.) 

(1 + 02 + 02)(1.01) - 4(0)(-0.103) 

1.01 

(Q11) (1 + 0.52 + 02 )(1.01) - 4(0.5)(-0.103) 

1.47 

Using the lengths-of-turn for the equivalent foil conductors presented in Table 6.2, 
the values of Ueff, 8 and Hz-N(X = hcu) presented in Table 6.3, and the values of (Q'.,) 
and (Q11) calculated above, the following terms can be calculated. For layer one, 

iTlliz-N(X = hcu)l 2 (Q'.,) (6.9 X 10-2)(0.5) 2(0.995) 
Ueff8 (3.29 X 107)(2.77 X lQ-4) 

1.87 X 10-6 0-m 

lT81Hz-N(X = hcu)l 2 (Q11) - (6.9 X 10-2)(2.77 X 10-4 )(0.5) 2 (1.01) 

4.82 X 10-6 m2 

II 
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The results of these calculations for all excited layers are given in Table 6.4. 
Using the values for the lengths of the gaps £9 between the layers listed in Table 6.2, 

the values of gap heights g given in Table 6.2, and the values of JLrN given in Table 6.3, 
we can determine the value of the following quantity associated with each interlayer gap 
within the excited layers. For gap one, 

The results of these calculations for the five gaps between excited layers are given in 
Table 6.4. 

The last step in this rather lengthy procedure is the actual calculation of Re;1c) and 
Le;1c)• To calculate Reis), (5.40) is used where NE= 26, N = 6, bwin is found Table 6.1, 
and the values of the terms in the summation appear in Table 6.4. 

262 2 (6.68 X 10-5] 
3.02 X 10-

= 1.5 n 
To calculate Leis), recall equation (5.68): 

Le;1c) = µ;~} {½ t [iTSIHz-N(X = hcu)l 2 (Qk,(a,,8,Ll))L 
1111n n=i 

+ E [igglHg-N1 2L} 
I 

( 
4

1r
3
~:~-:~~!62

) { ½ ( 1.94 X :o-4
) + 8.41 X 10-5

} 

= 5.1 µH 

In Section 6.1.2, we mention that it is possible to use one average turn length for the 
entire winding rather than calculate individual lengths for each winding layer, and we 
mention that this practice can be expected to produce. some error in the calculation of 
Re;1c) and Le;1c)• The average of the eight turn lengths presented in Table 6.2 is 9.0x 10-2, 

and the values of the calculated short-circuit data using this average length-of-tum are 

Reis)= 1.6 n Leis) = 5.5 µH 

which are 7% and 8% higher than those calculated using the individual lengths-of-turn. 
For the other short-circuit tests given in Fig. 5.2, the error produced by using the av
erage length-of-turn depended upon the test. For the (12) test, both the resistance and 
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inductance calculated at 100 kHz using the average length-of-turn were 16% over those 
calculated using the individual turn lengths. At the other extreme, the resistance and 
inductance values using the average length of turn was 12% under for the (34) test. For 
the (14) and (23) tests, the difference between the data calculated by the two methods 
was insignificant. 

6.2 PLOTS OF SHORT-CIRCUIT RESISTANCES AND 
INDUCTANCES VERSUS FREQUENCY 

In the previous section, we present a detailed step-by-step calculation of Reis) and Leis) 
at a single frequency of 100 kHz. In this section, the results of calculating values of 
Re;1c) and L(;1c)· for the six short-circuit tests of Fig. 5.2(c) over a five-decade range of 
frequencies, from 100 Hz to 10 MHz, are presented for the same transformer used in 
Section 6.1. For all of the short-circuit tests, the inner conducting winding is excited 
and the outer conducting winding is shorted. Current is assumed to flow out of the paper 
in the inner conducting winding and into the paper in the outer winding. The specific 
length-of-turn given in Table 6.2 for each layer was used to calculate the data presented 
in Sections 6.2 and 6.3. 

Table 6.5 shows the different normalized boundary conditions of magnetic field in
tensity for each of the eight winding layers and each of the six short-circuit tests shown 
in Fig. 5.2(c). We recall that in the expressions for the short-circuit resistance and 
inductance between two windings given in (5.40) and (5.68), respectively, we write 
the boundary conditions of the magnetic field intensity in terms of a normalized value 
Hz-N(X = hcu). The normalizing base value (HBASE = NELBASEfbw,n) is described in 
Section 5.2.3. Table 6.5 also shows the value of the ratio of the field boundary values a: 
that applies to each of the layers which were calculated using (6.3). With the information 
in Tables 6.1, 6.2, and 6.5, we can now compute the values of each of the six short-circuit 
resistances R(;1c) and inductances L(;1c) as given by (5.40) and (5.68), respectively. In 
Table 6.5, entries for a: are not given when both H z(X = 0) and H z(X = hcu) are equal 
to zero and a: = 0/0. This situation arises for a winding layer that lies in a region of 
zero magnetic field intensity; such a layer neither stores energy nor dissipates power, so 
this undetermined value of a: is of no concern. 

Figure 6.5 shows computer-generated plots of the six short-circuit resistances versus 
excitation frequency; Figure 6.6 shows similar plots for the short-circuit inductances 
of the example transformer. These plots show the dramatic changes in the leakage 
impedances of a transformer predicted by the field solution that is developed in this 
report. For example, the short-circuit resistance R(l4) at 1 MHz is approximately 100 
times its de value. 

For a simple winding layout such as that of the transformer under consideration, it 
is possible to predict the top-to-bottom ordering of the curves of R(;1c) and L(;1c) before 
performing any calculations. In general, the greater the number of open-circuit layers 
which exist between the excited winding and the shorted winding, i.e., layers which exist 
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Table 6.5: Values of H z-N and a for the Layers of the Example Transformer 
Under Six Different Short-Circuit Conditions. 

II Short-Circuit Test (12) 

II 
Symbol 

1 2 3 

Layer 

4 I 5 6 7 

L.IIBASE -1 -1 1 1 0 0 0 
Hz-N(0) 0 0.5 1 0.5 0 0 0 

H z-N(hcu) 0.5 1 0.5 0 0 0 0 
H z-N(X = 0) 0 0.5 0.5 0 0 0 0 

Hz-N(X = hcu) 0.5 1 1 0.5 0 0 0 
a 0 0.5 0.5 0 - - -

II Short-Circuit Test (13) 

II 
Symbol Layer 

1 2 3 4 I 5 6 i 

Jtf JBASE -1 -1 0 0 1 1 0 
Hz-N(0} 0 0.5 1 1 1 0.5 0 

H z-N(hcu) 0.5 1 1 1 0.5 0 0 
Hz-N(X = 0) 0 0.5 1 1 0.5 0 0 

H z-N(X = hcu) 0.5 1 1 1 1 0.5 0 
a 0 0.5 1 1 0.5 0 -

II Short-Circuit Test (14) 

II 
Symbol Layer 

1 2 3 4 I 5 6 i 

L_/ [BASE -1 -1 0 0 0 0 1 

Hz-N(O) 0 0.5 1 1 1 1 1 

H z-N(hcu) 0.5 1 1 1 1 1 0.5 
Hz-N(X = 0) 0 0.5 1 1 1 1 0.5 

H z-N(X = hcu) 0.5 1 1 1 1 1 1 
a 0 0.5 1 1 1 1 0.5 

Continued on Next Page 

8 

0 
0 
0 
0 
0 

-

8 

0 
0 
0 
0 
0 

-

8 

1 
0.5 
0 
0 

0.5 
0 

II 

II 

II 

II 



Section 6.2 Modeling Multiwinding Transformers 

II 

II 

II 

II 

II 

II 

Table 6.5: (cont.) Values of H z-N and a for the Layers of an Example 
Transformer under Six Different Short-Circuit Conditions. For all six tests: 

LBASE = -Isc· 

Short-Circuit Test (23) 

Symbol Layer 
1 2 3 4 I s 6 7 8 

L.IIBASE 0 0 -1 -1 1 1 0 0 
Hz-N(0) 0 0 0 0.5 1 0.5 0 0 

lL-N(hcu) 0 0 0.5 1 0.5 0 0 0 
H z-N(X = 0) 0 0 0 0.5 0.5 0 0 0 

H z-N(X = hcu) 0 0 0.5 1 1 0.5 0 0 
a - - 0 0.5 0.5 0 - -

Short-Circuit Test (24) 

Symbol Layer 
1 2 3 4 I 5 6 7 8 

L.IIBASE 0 0 -1 -1 0 0 1 1 

Hz-N(0) 0 0 0 0.5 1 1 1 0.5 
Hz-N(hcu) 0 0 0.5 1 1 1 0.5 0 

Hz-N(X = 0) 0 0 0 0.5 1 1 0.5 0 
H z-N(X = hcu) 0 0 0.5 1 1 1 1 0.5 

a - - 0 0.5 1 1 0.5 0 

Short-Circuit Test (34) 

Symbol Layer 
1 2 3 4 I 5 6 7 8 

Itf IBASE 0 0 0 0 -1 -1 1 1 

Hz-N(0) 0 0 0 0 0 0.5 1 0.5 
H z-N(hcu) 0 0 0 0 0.5 1 0.5 0 

Hz-N(X = 0) 0 0 0 0 0 0.5 0.5 0 
H z-N(X = hcu) 0 0 0 0 0.5 1 1 0.5 

a - - - - 0 0.5 0.5 0 
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Figure 6.5: Plots of calculated values for R(i1c) versus frequency for the 
short-circuit tests of Fig. 5.2(c). (a) shows R(l2), Rp 3) and Rc14). (b) shows 
R(2s), R(24) and R(34). 
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in a high-field region, the higher the equivalent resistance. Hence R(i4) > R(is) > R(12) 

and R(24) > R(2a). Likewise, the greater the number of gaps and open-circuit layers which 
exist between the excited and shorted windings, the higher the equivalent inductance, 
hence, L(t4) > L(13) > L(12) and L(24) > L(34)· Lastly, the longer the lengths-of-turn 
of the layers involved in the test, the higher the resistance and inductance. At low 
frequencies the relative length-of-turn determines the ordering of the resistance curves, 
since losses in open-circuit windings become negligible. At low frequencies R(34) > R(24) 

due to the longer length of the excited winding in the (34) test, whereas, at higher 
frequencies R(24) > R(a4) due to losses in high-field open-circuit layers. Ha single average 
length-of-turn is used for all six short circuit tests, then tests involving the same number 
of layers and having the same shape of de field-intensity diagram will have the same 
calculated value of impedance. For example, R(2a) = R(a4) and L(23) = L(34) if the same 
averaged length-of-turn is used for all the layers in both the (23) and (34) tests. In 
Figs. 6.5 and 6.6, R(a4) > R(2a) and L(a4) > L(2a) because the layers of interest in the 
(34) test are further out from the center leg of the core and have longer turn lengths 
than for the (23) test, although the shape of the de :field-intensity diagrams associated 
with each test given in Fig. 5.2(b) is the same. 

Examining the curves of Figs. 6.5 and 6.6 more closely, we see that in each case 
the curves have three major regions. At low frequencies the values of resistance are 
approximately equal to their de values, therefore, the curves appear flat until around 
4 kHz. Also, at frequencies above approximately 1 MHz the resistances increase linearly 
with frequency. Looking at the inductance curves we see that at low frequencies the 
inductance curves also approach their de values. ,AP, frequencies increase, though, eddy 
currents cause less of the magnetic field to penetrate the winding layers so less energy 
is stored in the layers. Energy storage in the interlayer gaps is insensitive to frequency, 
so as frequency increases, each of the inductance curves asymptotically approaches the 
value of inductance due only to the gap energy. 

The above plots of calculated values of resistance and inductance are repeated in 
Section 6.3 where we superimpose the results of laboratory measurements. 

6.3 MEASURED IMPEDANCE VALUES 

In Section 6.1 we present a detailed explanation of how to calculate values of short-circuit 
resistances and inductances. In Section 6.2, this discussion culminates in the presentation 
of graphs of the resistances and inductances for various hypothetical short-circuit tests. 
In the following section, we discuss the actual laboratory short-circuit measurements 
performed on the same EE-core transformer used in Sections 6.1 and 6.2, and performed 
on a sample pot-core transformer described in Appendix I. We present the measured 
short-circuit resistances and inductances for both the EE-core and pot-core transformers 
superimposed on computer-generated plots of calculated data and discuss the agreement 
between the measured and calculated data. 
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Table 6.6: List of Devices used in Laboratory Measurements 

II 
Device 

Wavetek 271 pulse/function generator E 
HP 3330B frequency synthesizer p ✓ 

Crown Delta Omega 2000 power amplifier ✓ 
Solar Electronics Co., 6220-lA audio isolation transformer ✓ 

Amplifier Research 50A15 RF amplifier ✓ 
Tektro'nix 7854 digital processing oscilloscope ✓ ✓ 

T+M Research Products, Inc., current-sense resistor 
SDN-100-BNC, 1.0080 0, 4 W E 

BNC-5-1, 0.10027 0, 5 W E 
BNC-5-5, 0.50235 0, 7 W p p 

·-

6.3.1 Laboratory Equipment Setup and Methods 

The laboratory measurements were made using the setup shown in Fig. 6.7. The spe
cific equipment used in these laboratory measurements is listed in Table 6.6. An "E" 
in Table 6.6 denotes equipment used to test the EE-core transformer, a "P" denotes 
equipment used to test the pot-core transformer and a "✓" denotes equipment used to 
test both transformers. In the measurement setup shown in Fig. 6.7, ·the output of a 
signal generator is fed through a linear audio amplifier to an isolation transformer. The 
output of the isolation transformer is then applied to the transformer under test. The 
excitation current waveform isc is picked up by the current-sense resistor RsENSE, and 
the voltage waveform VMEAS appearing across the excited winding is sensed by a differ
ential measurement across the terminals of the excited winding. The values of R(ik) and 
L(ik) were then calculated by a program residing in the oscilloscope according to the 
following algorithm: 

• Acquire isc(t) by averaging several sample waveforms to eliminate noise effects. 
Subtract the mean over one cycle of the acquired waveform to eliminate any spu
rious de offset, and then determine th~ rms value lsc over one cycle. 

• Acquire VMEAs(t) by averaging several sample waveforms. Subtract the mean over 
one cycle of the acquired waveform, and then determine the rms value VMEAS over 
one cycle. 

· • Multiply isc(t) and VMEAs(t) to obtain Pn(t), then determine the average power 
over one cycle (Pn). 
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• Determine the magnitude of the impedance from the rms values of excitation cur
rent and measured voltage using IZI = VMEAs/Isc-

• Determine the short-circuit resistance by dividing the time average power by the 
square of the rms excitation current, R(ik) = (PD)/ 1}0 . 

• Determine the short-circuit inductance by the formula 

where T is the period of VMEAs(t). 

This algorithm assumes that the measured waveforms isc and VMEAS are sinusoidal. 
To acquire data over the full range of desired frequencies, two different setups were 

required. These are referred to as the LF or low-frequency setup and the HF or high
frequency setup in Table 6.6 and in the subsequent text. Data acquired with the low
frequency setup are represented by diamonds in Figs. 6.8, 6.9, 6.11 and 6.12. Triangles 
in these figures denote data acquired with the high-frequency setup. For measurements 
performed on the EE-core transformer, the low-frequency setup was used from 500 Hz 
to 200 kHz and consisted of the equipment listed in Table 6.6 marked with an E or a 
✓ in the column "LF· Setup". At frequencies ranging from 18 kHz to 5.6 MHz, the EE
core transformer was tested using the equipment in Table 6.6 denoted by an E or a J 
under "HF Setup." For the pot-core transformer, the low-frequency setup was used from 
320 Hz to 100 kHz and the high-frequency setup from 18 kHz to 10 MHz. The overlap of 
frequency ranges for the two setups mutually confirms the data acquired by both setups. 
For the high-frequency setup, the combination of the audio amplifier and the isolation 
transformer shown in Fig. 6.7 was replaced by the RF amplifier. The RF amplifier has 
internal isolation making the external transformer unnecessary. For the low-frequency 
testing of the EE-core transformer, a Wavetek 271 pulse/function generator was used as 
the voltage source. For all the other tests, an HP 3330B frequency synthesizer was used 
because it produced a superior sinusoidal voltage waveform at the higher frequencies. 

In general, no effort was made in these short-circuit tests to maintain either a constant 
excitation current or excitation voltage between measurement frequencies. 5 Rather, the 
amplifier gain was adjusted to maintain measured waveforms which were apparently 
clean sinusoids. When too much gain was used, then the waveforms tended to distort; 
when too little gain was used, then the measured voltages became corrupted by noise and 
were too small to digitize without error. Only for the low-frequency measurement of the 
EE-core transformer was an effort made to maintain a constant input current. For the 
low-frequency tests on the EE-core transformer, the excitation current was maintained at 
approximately one ampere rms, or the largest rms value possible when the amplifier was 

5 Only normalized values of H :rN are used to calculate Ru1r.i and L(ilr.l, and the transformer is assumed 
to have negligible magnetizing current. Therefore, the actual magnitude of the current should not effect 
either the calculated or measured values for a square-loop core. Initial measurements have shown this 
hypothesis to be true. 
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unable to deliver a current of one ampere. Maintaining this level of excitation current 
lead to some distortion of the measured waveforms at low frequencies. For the other 
tests, the excitation currents ranged from 0.1 to 0.7 amperes rms. 

As is stated above, the algorithm used to acquire measured values of R(ilc) and L(ilc) 

is accurate only when VMEAS and isc are sinusoidal. No attempt was made to determine 
quantitatively how close the acquired waveforms were to perfect sinusoids. 

6.3.2 Laboratory Results 

Using the above described laboratory equipment, the six short-circuit tests of Fig. 5.2(c) 
were performed on the EE-core transformer. The results of these tests are given in 
Figs. 6.8 and 6.9, superimposed on the computer-generated data discussed in Section 6.2. 
The pot-core transformer was similarly tested using the equipment described above. The 
six short-circuit tests of Fig. 6.lO(c} yielded the data presented in Figs. 6.11 and 6.12 
along with the data calculated for the pot-core transformer. Observing the curves for the 
two transformers, we see that in one case, i.e., the pot-core transformer, the agreement 
between the measured data and the calculated data appears to be quite good over a 
frequency range of 320 Hz to 560 kHz. For frequencies above 560 kHz, the capacitance 
of the windings can no longer be considered negligible as evidenced by the dramatic 
nonlinear increase in the measured resistance. Although for the EE-core transformer the 
analytical results predict the relative magnitudes and the variation in parameter values 
fairly well, there appears to be significant disagreement between the actual measured and 
calculated data. To get idea on how close the measured and calculated data actually 
are, let us now look at the values at two specific frequencies for both transformers and 
determine the actual percentage differences involved. 

For the EE-core transformer at 100 kHz, values of 

R(1a),calc = 1.5 0 and L(1a),calc = 5.1 µH 

are calculated in Section 6.1.4. In the laboratory, the following values of R(ik) and L(ik) 

for the EE-core transformer were measured at 100 kHz for the (13} short-circuit test. 

R(1a),meaa = 1.65 0 L(13),meaa = 6.24 µH 

Using the formula 

x(ik),calc - x(ilc),meaa 100% % d"fli X x o = o 1 erence 
(ik),meaa 

(6.4} 

where X stands for R or L, we get percentage differences of -9% and -18% for the R(ia) 

and L(ia) cases, respectively. At a frequency of 1 kHz, the calculated and measured data 
for the EE-core transformer are 

R(13),calc = 79.5 mO 
R(l3),meaa = 112. mO 

L(13),calc = 8.03 µH 
L(13),meaa = 9.63 µH 
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Figure 6.8: Comparison of measured and calculated values of R(ik) versus 
frequency for the short-circuit tests of Fig. 5.2( c) using EE-core transformer. 
Lines = calculation data; Diamonds = data measured using LF setup; Tri

angles = data measured using HF setup. ( a) shows R(l2), Rc13) and R(l4)· 

(b) shows R(23), R(24) and R(34)· 
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Figure ~.9: Comparison of measured and calculated values of L(;k) versus 
frequency for the short-circuit tests of Fig. 5.2(c) using EE-core transformer. 
Lines = calculation data; Diamonds = data measured with LF setup; Tri
angles = data measured using HF setup. (a) shows L(12), £(13) and £(14)· 

(b) shows £(23), L(24) and £(34)· 
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Figure 6.10: The sample four-winding pot-core transformer under various 
short-circuit conditions. In the winding cross-section of ( a), the instanta
neous current is assumed in each case to be flowing into the paper in the 
outer conducting winding and flowing out of the paper in the inner wind
ings. Also shown are (b) the Hz(x, t) profiles at an arbitrary time instant t 
and (c) the schematic representations for the six different short-circuit tests 
including relative positions of external leads from the windings and internal 
shorts between the layers. 
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Figure 6.11: Comparison of measured and calculated values of R(;lc) versus 
frequency for the short-circuit tests of Fig. 6.lO{c) using pot core. Lines = 
calculation data; Diamonds = data measured with LF setup; Triangles = 
data measured with HF setup. {a) shows R(i2), R(is) and R(l4)· (b) shows 
R(2s), R(24) and R(s4) · 
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Using (6.4), we get differences of -29% and -17% for R(l3) and L(l3), respectively. 
These two frequencies were chosen so that we could examine the agreement between 
the measured and calculated data both at "low" frequencies where the resistance and 
inductance are dominated by their de values, and at "medium" frequencies where eddy
current effects are noticeable and interlayer capacitance is still negligible. 

For the pot-core transformer the calculated and measured data at 100 kHz are 

R(13),calc = 1.18 0 
R(13),meaa = 1.08 0 

L(l3),calc = 3.85 µH 
L(l3),meaa = 3.98 µH 

giving percentage differences of +9.3% for the resistance and -3.3% for the inductance. 
At 1 kHz the data for the pot-core transformer are 

R(13),calc = 58.1 mO 
R(13),meaa = 56.2 mO 

L(l3),calc = 6.45 µH 
L(13),meas = 6.49 µH 

giving differences of +3.4% for resistance and -0.62% for inductance. 

6.3.3 Sources of Disagreement Between Measured and Calculated 
Data 

By examining specific data points for both the EE-core and pot-core transformers, our 
initial suspicions concerning Figs. 6.8, 6.9, 6.11 and 6.12 have been confirmed. For the 
pot-core transformer, the calculated data for both resistance and inductance predict the 
actual values excellently at frequencies where capacitance is negligible. For the EE-core 
transformer, this prediction is not nearly as good. In this section, we examine some 
of the possible contributors to this disagreement between the measured and calculated 
values. 

One might be tempted to assume that the methods presented in this report do not 
adequately model the behavior of EE-core transformers due to the large amount of 
the winding which protrudes out from the body of the core. The article written by 
Venkatraman [20] contradicts this postulate, however. His measured values of resistance 
for individual windings in EE-core transformers show very good agreement with his 
calculations which are based upon fields analysis. 

Several factors can influence the accuracy of the calculated data. First, long leads 
from the transformer windings to the test setup can contribute resistance and inductance 
not predicted by the model. The inductance contributed by these leads is particularly 
severe if the leads are not tightly twisted together, or if there are large loops of wire 
due to twisted leads which have widely separated exit points from the bobbin. The 
effect of these lead inductances is exacerbated by turn ratios which are much greater 
or smaller than one. Second, for the model to adequately predict the behavior of the 
transformer, accurate information about the geometry of the transformer is needed. As 
shown in Section 6.1.4, the assumption of a single average length-of-turn for the EE
core transformer lead to calculated resistance and inductance values that ranged from 
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16% over to 12% under the corresponding values when individual lengths-of-turn were 
used, which verifies that these calculations are sensitive to geometric parameters. Third, 
the quality of the winding layers may affect the accuracy of the model. Extraneous 
conductors such as winding leads in high-field regions can produce losses which are not 
predicted by the model. Turns from one layer which sink into the underlying layer 
compromise the stretched-foil-conductor model and contribute to inaccuracies. Values 
of layer porosity that are "too small" may also compromise the model [17]. 

Great care was taken during the construction of the pot-core transformer. Lead 
lengths were kept to a minimum. Mechanical measurements of buildup were taken 
several times during the process of winding the transformer so that accurate geometric 
data could be used in the calculations. Winding layers filled the available window breadth 
and did not sink into underlying layers. Thus, many of the factors which can lead to 
discrepancies between the measured and calculated data were avoided, and an excellent 
match is seen in Figs. 6.11 and 6.12. 

The EE-core transformer was not constructed by the authors of this report, so we 
have no first-hand knowledge of the internal geometry of the windings. As is detailed 
in Section 6.1.2, the outside measurement of the actual windings, Yo,meas was greater 
than the minimum possible value Yo,min which lead to the assumption of a distributed 
gap 9a• Also in Section 6.1.2, it was necessary to assume an equation to calculate the 
length-of-turn for each layer. Windings on a bobbin with a rectangular center leg tend 
not to have perfectly flat sides. Rather, they bow outward, increasing the lengths-of-turn 
for the winding layers and causing the heights of the interlayer gaps to be nonuniform 
around the winding circumference. Thus, our assumed values for the gap heights and 
lengths-of-turn are only approximate. Although loosely twisted, the leads for the EE
core transformer are around 3 inches, rather than 2 inches for the pot-core transformer. 
Considering these factors, errors on the order of 20% are not inexplicable. 

Preliminary data acquired on other transformers shows that the difference between 
the measured and calculated data can be kept under 10% if care is taken while the 
transformer is wound, if exact geometrical parameters are known, and if turns ratios 
are low (around 3:1 or less). These data also show that the measured data for some 
transformers diverge from the calculated data at low frequencies, resulting in short
circuit inductance values which are much higher than predicted and which increase with 
decreasing frequency. This increase in measured inductance is attributable to the mag
netizing inductance of the transfor:r~er, the influence of which is no longer negligible at 
low frequencies. 
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Chapter 7 

Admittance-Link Equivalent 
Circuit 

Chapter 6 illustrates how the short-circuit resistances and inductances of a multiwinding 
transformer can be calculated from its geometry. The next step in predicting the high
frequency behavior of such a transformer is to use these short-circuit resistances and 
inductances to obtain the parameters associated with some circuit model of the trans
former. Two such equivalent-circuit models are presented; the admittance-link model 

. is developed in this chapter and the coupled-secondaries model in the next chapter. It 
is shown in Section 8.3 that these two models are essentially equivalent, but one or the 
other might be preferable depending on the circumstances of its application. 

The first circuit model that we examine is the linear network of admittance links given 
in Fig. 7.9. This circuit dates to the early part of this century and is well documented in 
the literature [1,13,18], but with the passage of time, these references have become less 
readily accessible and less widely known. Yet, with the assistance of computers to carry 
out the often lengthy calculations, the admittance-link transformer model might become 
a valuable tool for the power-electronics designer faced with the task of predicting cross
regulation effects in power supplies with multiple, isolated outputs. For these reasons, 
we go into some depth to show the basis of this circuit model and develop expressions 
for the values of the admittance links in terms of the short-circuit impedances of the 
transformer. The model is general for a transformer with any number of windings, but 
once again we use a 4-winding transformer as an example. 

Section 7.1 shows that for sinusoidal excitation, the familiar coupled-coils model of a 
linear K-winding transformer can be represented by a general K-port network with its 
associated phasor equations in either impedance or admittance form. From this K-port 
network, the admittance-link equivalent circuit is derived in Section 7.2 through a series 
of circuit transformations made possible by applying some simplifying assumptions. In 
Section 7.3, equations are derived by which the values of the elements in the admittance
link model can be calculated from the short-circuit impedances of the transformer, and 
an example calculation is shown. Finally, Section 7.4 contains general comments about 
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the applicability of the admittance-link model. 

7.1 GENERAL TRANSFORMER EQUIVALENT 
CIRCUITS 

A multicircuit transformer is a device in which the voltage across the terminals of each of 
a set of windings depends on the current in that winding and on the current in each of the 
other windings. The coupled-coils model pictured in Fig. 7.1 is a familiar description of 
the linear inductive interactions between the different windings of a transformer. In each 
of the equations for winding voltage, the coefficient that multiplies the time derivative 
of current in the same winding is called the self-inductance, and each of the coefficients 
that multiplies the time derivative of current in a different winding is called a mutual 
inductance. 

Noticing that each of the mutual-inductance coefficients appears twice in the equa
tions of Fig. 7.1, there are seem to be ten different coefficients that characterize a 4-
winding transformer. After the series of circuit transformations in Section 7.2, it is found 
that only six coefficients are actually needed to characterize the leakage-impedance ef
fects in a 4-winding transformer. After reducing the number of coefficients from ten to 
six, however, the turn ratios of the transformer must also be known in order to use the 
resulting circuit model. 

More generally, a linear K -winding transformer can be represented by the "black 
box" K-port network shown in Fig. 7.2, with each port representing a different trans
former winding. If such a general network is restricted to sinusoidal steady-state op
eration, we can specify the relationships between the various transformer windings by 
writing a set of phasor-current or phasor-voltage equations for the K windings as shown 
in the figure. In each of the equations for winding voltage, the coefficient that multiplies 
the current phasor of the same winding is called the self-impedance and each coefficient 
that multiplies the current phasor of a different winding is called a mutual impedance. 
When the set of K equations in Fig. 7.2(b) is expressed in vector form as 

[V] = [Zl[l] (7.1) 

the matrix [Z] contains self-impedances along the diagonal and mutual impedances off 
the diagonal. 

Alternatively, a vector equation for the current expressions in Fig. 7.2(c) can be 
written, where the coefficients that multiply the various winding voltages form the ad
mittance matrix [Y]. 

(7.2) 

For any realizable linear circuit, [Z] and [Y] are inverses of each other, that is, 

(7.3) 
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Figure 7.1: Coupled-coils model of a linear 4-winding transformer, with. 
the self-inductance of winding j designated L; and the mutual inductance 
between windings j and k designated M;k• 
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Figure 7.2: (a) K-port phasor model of a linear, /(-winding transformer. (b) 
A set of K equations that relates the I< winding voltages to the K winding 
currents. (c) An equivalent set of equations that relates the [( winding 
currents to the K winding voltages. 
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Since these two matrices are equivalent dual descriptions of the K-port network, we 
continue the discussion in terms of the impedance matrix [Z]. 

The voltage equations in Fig. 7 .2(b) are expressed in terms of coefficients of the 
form Z ik to emphasize that the coefficients represent impedances. Note that in these 
equations, the subscript jk indicates both the location of each impedance in the matrix 
[Z] as well as which voltage-current pair is used to calculate the impedance. Often the 
resistive effects in these impedance relationships can be lumped with external resistances, 
or the resistive effects are small enough to be ignored; therefore, it is common practice 
to write the network voltage equations in terms of self- and mutual inductances instead 
of impedances, giving the familiar coupled-coils model of Fig. 7.1. However, since one 
of the main interests here is the variation of the apparent winding resistances with 
frequency, such a simplifying assumption is not made. Instead, the coupled windings of 
a K-winding transformer are represented as a K-port network that may contain resistive 
and inductive elements, a network whose terminal characteristics are given by the vector 
equation (7.1) which represents the simultaneous equations in Fig. 7.2(b). 

Although we do not include any capacitive effects in our discussion, the model can ac
commodate self-capacitance of any winding because that capacitance simply contributes 
a negative imaginary component to the winding self-impedance. Capacitive coupling or 
leakage resistance between windings, however, cannot be accommodated by this model 
due to the assumption in the next section that an electrical "tie," or connection, can 
be made between all winding circuits without changing any of the winding voltages or 
currents. The exclusion of interwinding capacitance is consistent with the description of 
a transformer as a K-port network because the network equations in Fig. 7.2(b) and (c) 
are incapable of describing the voltage across an interwinding capacitance, i.e., a voltage 
between two terminals of different ports. It is shown in the next section how some sim
plifying assumptions permit this K-port network to be replaced by the admittance-link 
equivalent circuit for modeling the transformer. 

7.2 DERIVATION OF THE ADMITTANCE-LINK 
EQUIVALENT CIRCUIT 

The admittance-link equivalent circuit for an example 4-winding transformer is derived 
below by a series of steps. In Section 7.2.1, equations are written for the 4-port network 
that represents the actual transformer, then equations are derived for all winding circuits 
referred to a common winding. Simplifying assumptions are applied which allow the 
"referred" transformer to be modeled by a 5-terminal circuit in Section 7.2.2, then by 
a 4-terminal circuit in Section 7.2.3. It is shown in Section 7.2.4 how this 4-terminal 
circuit may be viewed as a 3-port network, and finally, Section 7.2.5 explains how the 3-
port network may be represented instead by a mesh of admittances, the admittance-link 
equivalent circuit. 
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Figure 7.3: (a) 4-winding transformer used as an example. (b) The corre
sponding network equations in impedance form. 

7.2.1 4-Port Network 

A schematic diagram of the 4-winding transformer used as an example is shown in 
Fig. 7.3. The admittance-link model is derived without regard for which particular 
winding of the transformer is the primary winding. 

If we assume that the only interactions between the different windings of the trans
former are through mutual impedances; in particular, if we ignore any capacitive coupling 
between windings and assume that the load circuits are independent, we can deduce two 
important facts. First, the "mutual" nature of mutual impedances tells us that the im
pedance matrix [Z] in (7.1) is symmetric. It contains four self-impedances along the 
diagonal and six mutual impedances off the diagonal, a total of ten different elements. 
For a K-winding transformer, there are K(I( + 1)/2 different elements in the impedance 
matrix. The second fact deduced is that one side of each transformer winding can be 
connected to a common point without changing the operation of the circuit. This fact 
is used in Section 7.2.2. 

An alternate form of the equivalent circuit in Fig. 7.3 th.at has no step-up or step
down of voltages due to ideal-transformer action can be drawn if all of the voltages, 
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Figure 7.4: ( a) 4-port-network equivalent circuit of the transformer which 
has all other winding circuits referred to winding number 4. (b) The corre
sponding network equations. 
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currents, and impedances associated with every winding of the transformer are referred 
to a single, preselected winding. Winding ,t is chosen here for convenience so later in this 
derivation, the impedance-matrix row and column numbers correspond to the winding 
numbers of the voltage and current used to calculate each impedance. With winding 
4 designated as the winding to which all others are referred, the voltage and current 
transformation equations 

V'- ( N4) V. -3 N- -1 
3 

(7.4) 

J'. -, ( N;) I. 
N4 - 3 

(7.5) 

may be applied to produce the equivalent circuit of Fig. 7.4. When modeling the trans
former as part of a larger network, any external circuits connected to windings 1, 2, or 
3 must also be referred to winding 4 using these equations. The effect is to refer the 
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impedance of each external circuit as follows. 

(7.6) 

Because the voltage and current of winding 4 are not actually "referred" by (7.4) and 
(7.5), i.e., ~ = L and ~ = L, the unprimed form of these symbols is used in the 
subsequent equations. 

To obtain the network equations in Fig. 7.4(b) from those in Fig. 7.3(b), the inverse 
relationships corresponding to (7.4) and (7.5), 

v. 
-J 

(Ni 
N4 

V'-) -J (7.7) 

J. ( N4 I'-) (7.8) -J N· -1 
J 

are substituted into the equations in Fig. 7 .3(b) to give 

(N1 
N4 

') (N4 vl =Zn N1 I') +z ( N4 -1 -12 N2 
I')+ z ( N4 -2 -13 N3 1~) + Z144 

(N2 _ 
N4 

') (N4 V2 = Z21 N1 1) (N4 11 +Z22 N
2 

1) ( N4 12 + Z23 N3 
~) +Z24L 

(N3 
N4 

') (N4 JG =kn N1 1) (N4 l1 + Z32 N
2 

1) ( N4 
l2 +k3 N3 ~) +Z344 

(N4 L =.B.41 -N1 
1) (N4 11 + Z42 N

2 
') (N4 12 + .B.43 N

3 
1~) + Z444 (7.9) 

Rearranging, 

V'--1- ( N; ) , ( N; ) 1 ( N; ) 1 ( N4 ) Nf Zn 11+ N1N2 Z12 12+ N1N3 Z13 b+ N1 Z14 L 

V' - ( N; Z ) I'+ - 2 - N2N1 - 21 - 1 ( N; ) 1 ( N; ) t ( N4 ) Nf Z22 12+ N
2
N

3 
Z23 ~+ N

2 
Z24 4 

1 ( N; ) 1 ( N; ) 1 
V 3 = N3N1 Z31 11+ N3N2 Z32 12+ ( ~j Z33) ~+ (~: k4) L 

V4= (N4 ) 1 N1 Z41 11+ (N4 ) 1 N
2 

Z42 12+ (N4 ) 1 N3 .B.43 b+ Z444 (7.10) 

These simultaneous equations are written in vector form as 

(7.11) 
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where [Z'] is the "referred" impedance matrix obtained from the elements of [Z] by 

(7.12) 

It can be seen from this expression that if [Z] is symmetric, as argued in Section 7.2.1, 
then [Z'] is symmetric also. 

The following assumption, made throughout this research report, is used to simplify 
the network equations above. 

Assumption 1: The transformer core material is of high enough perme
ability that the ampere-turns of the different windings sum to approximately 
zero. 

Because the tr'ansformer circuits have already been referred to winding 4, this assumption 
implies 

Li= -(I~+ I~+ L) (7.13) 

Substituting (7.13) into the equations of Fig. 7.4(b) gives 

V'1 (Z~I - Z~4)L~ + (Z~2 - Z~4)L~ + (Z~3 - Z~4)L 

v~ (z~ 1 - Z~4)L~ + (z~2 - Z~4)L~ + (Z~3 - z~4)L 

_1G (~1 - Z~4)L~ + (~2 - Z~4)L~ + (Z~3 - Z~4)L 

(7.14) 

These equations are used in Section 7 .2.2. 

7.2.2 5-Terminal Circuit 

In Section 7.2.1, it is argued that the absence of capacitive coupling between transformer 
windings makes the following assumption valid. 

Assumption 2: One side of each transformer winding may be connected to 
a common point without disturbing the operation of the circuit. 

Thi~ assumption applies to the referred transformer equivalent circuit of Fig. 7.4 as well 
as to the actual transformer. If an electrical "tie" is added between all the terminals of 
one polarity, and the circuit is redrawn as shown in Fig. 7.5, the new equivalent circuit has 
only five terminals instead of eight. It is important to recognize that the circled terminal 
numbers in this figure, used throughout the rest of the chapter, do not correspond to the 
terminals of the actual transformer, but instead to the terminals of an equivalent circuit 
obtained by referring all the transformer winding circuits to a common winding. It is 
also helpful to note that in the diagrams of this chapter, multi port networks, which have 
terminals arranged in pairs, are typically drawn as solid boxes while other equivalent 
circuits of the transformer are drawn as dashed boxes. 
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Figure 7.5: 4-port-network equivalent circuit of Fig. 7.1 with a "tie" con
necting one side of each port to a common point. The resulting circuit has 
only the five nodes, labeled with circled numbers. 

7.2.3 4-Terminal Circuit 

Because equal and opposite currents must flow in the two leads of each port in the 4-port 
network of Fig. 7.5, the current flowing out of the circuit at terminal O is equal to the 
sum of the other four terminal currents. But (7.13) states that this sum is equal to zero, 
which means that for any configuration of sources and loads connected to the equivalent 
circuit, the connection between the tie and terminal O can always be broken as shown 
in Fig. 7 .6 without affecting the operation of the circuit. A disconnected terminal O is 
shown as the "ground" node as a reminder that when using this equivalent circuit, one 
side of all sources and loads is connected to this node, which is external to the equivalent 
circuit. 

The terminal voltages of the equivalent circuit in Fig. 7.6 can be described by selecting 
one terminal as the reference, and specifying all other voltages relative to this reference 
terminal. The choice of reference terminal is independent of the choice of reference 
winding outlined in Section 7.2.1. Again, for convenience in later subscript numbering, 
the number 4 is used here to designate the reference terminal as well. A new symbol of 
the form V ; 4 is chosen to stand for the differential-voltage phasor between terminal j and 
terminal 4. Note that the differential-voltage phasors defined here represent voltages in 
only those transformer equivalent circuits where all winding voltages, represented here 
by the four terminal voltages relative to ground, have already been referred to a chosen 
reference winding. 

In general, a differential-voltage phasor may be specified between any two terminals 
of the equivalent circuit, regardless of which terminal is designated the reference. In 
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, 
-----------------~ 

Figure 7.6: The 1-terminal equivalent circuit that results from breaking the 
connection between the tie and terminal 0. 
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terms of the actual winding voltages seen in Fig. 7.3, with winding ,t chosen as the 
reference winding for referral, differential voltages can be expressed as 

V-k = (N4) V- - (N4) Vk 
-J N; -J Nk - (7.15) 

For the choice of terminal 1 as the reference, this equation becomes 

(7.16) 

It is helpful in understanding differential-voltage phasors to recognize that if the stray 
effects in the transformer are neglected, all the transformer winding voltages referred 
to a common winding are equal, which implies that all the differential-voltage phasors 
given by (7.15) are equal to zero. 

The set of equations in (7.11), which describe the ,t-terminal equivalent circuit in 
Fig. 7 .6, is transformed into the set of three expressions below for the differential-voltage 
phasors with respect to terminal 1. As indicated by (7.16), the difference is taken between 
each of the first three equations in (7 .11) and the last one. 

V 14 = v~ - V,i = (Z~1 - Z'14 - z~l + Z~,i)l~ 

+ (Z'12 - Z'14 - Z~ 2 + Z~4 )1~ 

+ (Z:
113 - ~;.1 - Z:~3 + Z:~1)1~ 
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(z;1 - z;4 - ~1 + Z~4)l~ 

+ (z;2 - z;4 - ~2 + ~4)1; 

+ (z;3 - z;4 - ~3 + ~4)L 

(~1 - ~4 - ~1 + Z~4)l~ 

+ (~2 - ~4 - ~2 + Z~4)l~ 

+ (~3- ~4 - ~3 +~4)L 

Each of the impedance coefficients above has the form 

Section 7.2.4 

{7.17) 

{7.18) 

where the subscript r stands for reduced, which means that the array indices range from 1 
to 3, one less than the number of windings in the transformer. Because [Z'] is symmetric 
as pointed out below (7.12), the reduced impedance matrix [Zr] is also symmetric: 

Z r,kj Z~; - Z~4 - Z~; + ~4 

z1k - ~k - z14 + ~4 

zr,jk (7.19) 

Using the notation introduced in (7.18), (7.17) may be written in more compact form 
as 

{7.20) 

These equations are represented by the following vector equation. 

{7.21) 

The subscript d4 stands for differential, referenced to terminal 4, and as before, the 
subscript r stands for reduced. The r subscript is used to distinguish between the (3 X 3) 
reduced impedance matrix here and the {4 x 4) impedance matrix [Z] in {7.1), which 
represents a different set of quantities for the same transformer. The r is also used to 
distinguish [l~] = [l~ 1; LJT from [I']= [l~ l~ L L]T, although [l~] is contained in 
[I']. 
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Figure 7.7: 3-port-network representation of the admittance-link equivalent 
circuit, showing the impedance form of the 3-port network. 
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7.2.4 3-Port Network 

The form of (7.20) suggests that an equivalent representation of the 4-terminal equivalent 
circuit in Fig. 7.6 is the 3-port network shown in Fig. 7.7, synthesized from impedances 
and controlled-voltage sources. Although this network has one less port than the one in 
Fig. 7.6, both 4-terminal equivalent circuits are described by (7.20). The fundamental 
difference is that the 4-port network in Fig. 7.6 keeps track of the voltage across each 
transformer winding, while the 3-port network in Fig. 7.7 does not. The 3-port network 
gives only the differential voltages between those transformer terminals not connected to 
the hypothetical tie, after all voltages have been referred to a common winding. Although 
the 4-port network can provide four winding voltages rather than three differential volt
ages, the additional information is not available through the terminals of the equivalent 
circuit in Fig. 7 .6 because the connection between terminal O and the tie is broken. 

Fig. 7.7 shows one transformer equivalent circuit suitable for computer simulation. 
Another one is obtained by defining the reduced admittance matrix 

(7.22) 

then premultiplying (7 .21) by [Yr]. 

(7.23) 

This vector equation represents the following set of simultaneous equations. 

I' Yr 11 V 14 + Yr 12 V 24 + Yr 13~4 (7.24) -1 . . . 
I' -2 Y r,21 V 14 + Y r,22 V 24 + Y r,23~4 (7.25) 

I' ~ Y r,31 V 14 + Y r,32 V 24 + Y r,33~4 (7.26) 

From this set of equations, the 3-port network can be represented using admittances 
and controlled-current sources as shown in Fig. 7.8. This new circuit, showing the 
admittance form of the 3-port network, is simply the dual of the impedance form of 
Fig. 7.7. Another, simpler transformer equivalent circuit is derived from the admittance 
form in Section 7.2.5. 

7.2.5 Admittance-Link Equivalent Circuit 

It is clear that (7.24) through (7.26) describe the terminal characteristics of the equivalent 
circuit in Fig. 7.8, which is redrawn in Fig. 7.9(a) without showing the internal elements 
of the 3-port network. Part (b) of Fig. 7.9 shows a general 4-terminal admittance
link equivalent circuit for the linear network of Fig. 7.9(a). For the correct choice of 
admittance values, the equivalent circuit can be made to have exactly the same terminal 
characteristics as the network in Fig. 7.9(a). The equivalence of the two circuits is proven 
in this section. The main advantage of the admittance-link equivalent circuit over the 
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Figure 7 .8: 3-port-network representation of the transformer equivalent cir
cuit, showing the admittance form of the :3-port network. 
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Figure 7.9: (a) 3-port-network equivalent circuit for a '1-winding transformer. 
(b) Corresponding 4-terminal admittance-link equivalent circuit. 
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Figure 7 .10: Hypothetical short-circuit test with terminal 1 of the admit
tance-link model excited and all other terminals shorted to ground. 
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3-port-network representations in Figs. 7.7 and 7.8 is simplicity; the admittance-link 
equivalent circuit contains only linear admittance elements with no controlled sources. 

In the admittance-link equivalent circuit of Fig. 7 .9(b ), the terminal voltages and 
currents are the same as those in Fig. 7 .5; hence, all currents except those associated 
with terminal 4 are shown with primes to indicate referral to winding 4. Once again, the 
unconnected ground symbol is included in Fig. 7.9(b) to allow terminal O to be called 
ground, and as a reminder that this node is not part of the equivalent circuit. The six 
branches or "links" of the equivalent circuit arc labeled using the new lower-case symbol 
y 'k' where j and k designate the adjoining terminals, to distinguish these admittances 
-1 
from all the others that have appeared so far. The choice of admittances instead of 
impedances for the labels is a natural outcome of the following derivation, but each 
admittance 11.. .k could be inverted to obtain the corresponding impedance of the link if 
that form is desired. 

The simplest way to prove the equivalence of the two circuits in Fig. 7 .9 is to derive the 
admittance values that cause the circuit in Part (b) to be described by the same equations 
as the circuit in Part ( a), (7 .24) through (7 .26). This is done below by considering a series 
of hypothetical short-circuit-admittance tests in which one terminal of the equivalent 
circuit is excited relative to a common interconnection of the remaining three terminals 
as illustrated in Fig. 7 .10. It is seen below how each of these tests causes several terms 
of network equations (7.24) through (7.26) to be zero, allowing superposition to be used 
in proving the equivalence of the two circuits. 

These short-circuit-admittance tests are different from the short-circuit-impedance 
tests, usually called ju~t short-circuit tests, which are the subject of Chapters 5 and 6. To 
represent a short-circuit-impedance test, one terminal of the admittance-link equivalent 
circuit would be excited relative to another, and the remaining terminals would be left 
unconnected or open-circuited. 
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To begin the derivation, the circuit in Fig. 7.10 has terminals 2, 3, and 4 shorted to 
ground, which sets voltages V 24 and V 34 to zero. This allows network equations (7 .24) 
through (7 .26) to be rewritten 

I' -1 

l~ 

L 

YruV14 
' 

Yr 21 V14 
' 

Yr,31 V14 

(7.27) 

(7.28) 

(7.29) 

A new symbol, a double-subscripted current phasor of the form l;k, is now introduced 
to represent the current through each admittance link. For example, 112 represents the 
current flowing through admittance element 1t

12 
with a reference direction from terminal 

1 to terminal 2. 
Since no current flows through shorted admittance links, drawn with dashed lines in 

the figure, only the three admittance links connected to terminal 1 carry current in this 
short-circuit test, and 

(7.30) 

This also means, for example, that terminal current l~ is equal to the admittance-link 
current 121 , or -112• It follows that 

I' -2 (7.31) 

~ -l13 -1t13V 14 (7.32) 

Equating the right-hand sides of (7.31) and (7.28), and doing the same for (7.32) and 
(7.29), 

1!.12 

1!.13 

-Y -r,12 (7 .33) 

(7.34) 

These are two of the admittance-link values in terms of elements in the reduced admit
tance matrix lY rl• A third admittance-link value is obtained by combining (7.27) and 
(7.30). 

y _ l~ 112 + l13 + l14 
-r,u - V V 

-14 -14 
(7.35) 

Rearranging and substituting (7.33) and (7.34), 

1!.14 = Y r,11 - 1!.12 - 1!.13 = Y r,11 + Y r,12 + Y r,13 (7.36) 

Another short-circuit test is shown in Fig. 7.11, for which similar equations may be 
written as follows. Here, V 14 and }G4 are zero and the network equations (7.24) through 
(7.26) become 

I' -1 

I' -2 

I' "'-3 

Y r,12V 24 

Yr 22V24 
' 

Yr,32V 24 

(7.37) 

(7.38) 

(7.39) 
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Figure 7.11: Hypothetical short-circuit test wit.h terminal 2 of the admit
tance-link model excited and all other terminals shorted to ground. 

In this case, 
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{7.40) 

Each of the shorted-terminal currents flows through a single admittance link; for example, 

I' - I - y (-V ) -3 - -32 - -23 -24 

Equating the right-hand sides of (7 .39) and (7.41) gives 

Y --Y --Y -23 - -r,32 - -r,23 

(7.41) 

(7.42) 

which is the fourth admittance-link value in terms of a reduced-admittance-matrix ele
ment. Another admittance-link value is obtained by combining {7.38) and (7.40). 

y - l~ 
-r,22 - V 

-24 
(7.43) 

Rearranging and substituting (7.33) and (7.42), 

(7.44) 

The sixth admittance-link value is calculated by considering the short-circuit test 
shown in Fig. 7.12. With V 14 and V 24 both zero, (7.26) may be written 

I' y - ~ 
-r,33 - V 

-34 

Again, it is apparent from the circuit diagram that 

(7.45) 

{7.46) 
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Figure 7 .12: Hypothetical short-circuit test with terminal 3 of the admit
tance-link model excited and all at.her terminals shorted to ground. 

which may be substituted into (7.45). 

y _ k1 + 132 + 13., 
-r,33 - V 1l13 + 1l23 + _k'.3,i 

-34 

Rearranging and substituting (7.34) and (7.42), 

(7A7) 

(7.48) 

The results of this derivation, which give the admittance-link values as functions of 
elements in the reduced admittance matrix [Yr], may be expressed in just two equations 
with variable subscripts. The first encompasses (7.33), (7.34), and {7.42), and the second 
encompasses (7.36), (7.44), and (7.'18). 

y "k -J 
-Y "k - -Y k" -r,J - -r, J 

3 

1!.;4 = L Y r,jk 
k=l 

j < k; j,k = 1,2,3 (7.49) 

j= 1,2,3 (7 .50) 

The derivation here may be extended for a transformer with any ni1mber of windings K 
greater than or equal to two, with the following general results. 

J!.;k -Yr,;k = -Yr,kj 

K-1 

L Yr,jk 
k=l 

j<k; j,k=l,2, ... ,(K-1) (7.51) 

j = 1,2, ... ,(K-1) (7.52) 
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This completes the derivation of expressions for the admittance values that give the 
admittance-link equivalent circuit in Fig. 7.9(b) the same terminal characteristics as 
the 3-port-network equivalent circuit in Fig. 7.9(a) for a single frequency of sinusoidal 
excitation. That 3-port-network equivalent circuit is shown earlier in Section 7.2 to 
be a valid model for a 4-winding transformer under the simplifying assumptions made 
throughout this report. In the next section, it is shown how the admittance-link values 
can be calculated from the short-circuit impedances of a transformer, either calculated 
or measured as described in Chapter 6. 

7.3 CALCULATION OF ADMITTANCE-LINK 
VALUES FROM SHORT-CIRCUIT IMPEDANCES 

It is shown in Section 7.2 that, under the simplifying assumptions of negligible magne
tizing current and no capacitive coupling between windings, the admittance-link model 
of Fig. 7.9(b) can completely characterize the ac behavior of a 4-winding transformer 
for any chosen frequency. In this section, equations are derived by which the neces
sary admittance-link values can be calculated from the short-circuit impedances of the 
transformer. 

Although the values of the elements in the admittance-link model are frequency
dependent, they are independent of the particular combination of linear loads and sinu
soidal excitation sources connected to the transformer. The principle of superposition 
allows transformer behavior to be predicted for an infinite number of source-load com
binations from just a few pieces of information, namely, the short-circuit impedances of 
the transformer. Loads may be of any size, from as small as an open circuit to as large 
as a short circuit. 

The following derivation is carried out for the example 4-winding transformer, then 
the results are generalized to a transformer with K windings. More specifically, equa
tions are derived by which the values of six admittance links in circuit of Fig. 7.9(b) 
can be calculated from the six short-circuit impedances of the transformer. Although 
the derivation is somewhat involved, the resulting equations are quite simple and are 
summarized in Section 7.3.4. An example calculation of a set of admittance-link values 
is given in Section 7.3.5. 

7 .3.1 Obtaining the Reduced Impedance Martix 
from the Short-Circuit Impedances 

Equations for the elements of the reduced impedance matrix [Zr] are derived in this 
section by considering some hypothetical short-circuit-impedance tests performed on 
the admittance-link equivalent circuit of Fig. 7.9(b). After the entries of [Zr] have been 
deduced, the reduced admittance matrix [Y rl is obtained by inverting [Zr] according to 
(7.22). The values of the individual admittance links are finally computed according to 
the generalized equations (7.51) and (7.52). 
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Figure 7.13: Short-circuit test (1-1) applied to the 4-terminal equivalent cir
cuit to determine the impedance Zr,ll· 

The admittance-link equivalent circuit is represented here by the · ,t-terminal "black 
box" shown in Fig. 7.1:J, which corresponds to the dashed box in either part of Fig. 7.9. 
The network equations for t,he admittance-link equivalent circuit in terms of the elements 
of [Zr] are repeated here from (7.20). 

V14 zr,ul~ + Zr,12I; + Zr,l3I; (7.53) 

V 24 Zr,21E1 + zr,22I~ + Zr,231; (7.54) 

~4 Zr 3d~ + Zr 32[~ + Zr 331; ' . . (7.55) 

To calculate the diagonal elements of [Zr), terminal 4 of the equivalent circuit is 
connected to ground and each of the other terminals is excited in t.urn. This corresponds 
to short-circuiting winding 4 of the transformer and exciting each of the other windings, 
i.e., performing short-circuit tests (14), (24), and (34) in the notation introduced in 
Section 5.1.2. 

For the first test, illustrated in Fig. 7 .13, terminal 1 of the circuit is excited, terminal 4 
is grounded, and the remaining terminals are left open-circuited. · Since l~ and ~ are 
zero, (7.53) ·reduces to 

Z - V 14 (7 6) 
-r,11 - I' .5 

-1 

Substituting the expression for V 14 from (7.16) and the value of 1'1 from (7.5), and 
recognizing that V 4 = 0 for this test, this equation can be written in terms of an actual, 
unprimed voltage and current as 

z --r,11 -
(&) V -V N 1 -1 -4 

(&) l N 4 -1 

(7.57) 
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Figure 7.14: Short-circuit test (2'1) applied to the •1-t.errninal equivalent cir
cuit to determine the impedance Zr,22 . 
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Referring to Fig. 7 .5, it can be seen that the external connect.ions to the adrnit.tance
link equivalent circuit in Fig. 7 .9 represent short-circuit-impedance test (14) on the actual 
transformer, in which winding 1 is excited, winding '1 is short-circuited, and the remaining 
windings are left open-circuited (L2 = h = 0) . Under these circumstances, Vi/ Li in 
(7.57) is simply short-circuit impedance Zt 14 ). 

(7 .58) 

For the next hypothetical test, terminal 2 of t.he equivalent circuit is excited and 
terminal 4 is grounded as shown in Fig. 7.14. In the same manner as above, 

V 24 

T -2 

(&)v V N 2 -2 - -4 

(N..,) I ,:r;_ -2 

(7.59) 

zr,22 (7.60) 

Similar equations could be written for the third test with terminal 3 excited and ter
minal 4 grounded, but the pattern is clear: From short-circuit tests with terminal 4 
grounded, the diagonal elements of [Zr] are obtained. 

j=l,2,3 (7.61) 
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Figure 7 .15: Short-circuit test ( 12) applied to the 4-terrninal equivalent cir
cuit to determine the impedance Zr,12 . 

Because only two windings are involved in each of these short-circuit tests, this result is 
easily extended to a transformer with K windings. 

(NK)
2 

z .. - - z. 
-r,JJ - Ni -(JK) j= 1,2, ... ,(K-1) (7 .62) 

Expressions for the off-diagonal elements of the symmetric matrix [Zr] are found by 
considering the remaining three hypothetical short-circuit tests, (12), (13), and (23). 
First, terminal 1 is excited and terminal 2 is grounded as shown in Fig. 7.15. With 
~ = O, (7.53) and (7.54) may be written 

(7.63) 

(7.64) 

Subtracting (7.64) from (7.63) and using V 14 - V 24 = V 12 from (7.15), Zr,21 = Zr,12 
from (7.19), and 1~ = -li from Fig. 7.15, 

V 12 (Zr,11 - zr,2dli + (Zr,12 - Zr,22H~ 

(Zr,11 + Zr,22 - 2Z:r,12)l'1 

V 12 
I' -1 

(7 .65) 

(7.66) 

By the definition of differential voltages in (7.15), the quantity V 12 may be written in 
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terms of unprimed voltages. 

V12= (Z;)v1- (Z:)v2 (7.67) 

Using (7.67), the fact that V 2 = 0 in this test, and the definition of I~ in (7.5), the 
following expression can also be written for the impedance in (7.66). 

(&) V 2 
V 12 _ N 1 -1 _ (N4) z 
I' - (!ii) - N -(12) 
-1 N4 I1 1 

(7.68) 

Equating the right-hand sides of (7.68) and (7.66), 

(7.69) 

Rearranging, 

Zr,12 = ½ [zr,11 + zr,22 - (Z:) 
2 

Z(12)] (7.70) 

Then substituting (7.58) and (7.60) gives 

z,,12 = z,,,. = ~ [ (;;) 
2 

z(l4J + (::)' zl"l - (;;)' Zt12i] 
NJ (.Z:(14) - .Z:(12) Z (24)) 
2 N2 + N.2 

1 2 
(7.71) 

The next hypothetical short-circuit test has terminal 2 excited and terminal 3 ground
ed as shown in Fig. 7.16. The following equations which are analogous to (7.63) through 
(7.71) are obtained by a parallel argument. 

With I~ = 0, (7.54) and (7.55) may be written 

zr,22I; + zr,23L 

Zr 321'2 + Zr 33L~ 
' ' 

(7.72) 

(7.73) 

Subtracting (7.73) from (7.72) and using V ~4 - ~ 4 = V 23 , Zr,32 = Zr,23, and for this 
test, I~= -I;, 

V 23 (Zr,22 - zr,32)I~ + (Zr,23 - zr,33)L 

(Zr,22 + Zr,33 - 2Zr,23)I~ 

V23 
7 -2 

(7.74) 

(7.75) 
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Figure 7.16: Short-circuit test (23) applied to the 4-terminal equivalent cir
cuit to determine the impedance Z.r, 23 . 

By the definition of differential voltages (7.15), the quantity V 23 may be written in terms 
of the voltages across the transformer windings in Fig. 7.3 . 

V 23 = (;:) V 2_ - (;:) V 3 (7 .76) 

Using (7.76), the fact that ~ = 0 in this test, and the definition of L; m (7 .5), the 
following expression can also be written for the impedance in (7.75). 

(7 .77) 

Equating the right-hand sides of (7. 77) and (7 . 75), 

( z:) 2 

Z (23) = Z.r,22 + zr,33 - 2Z.r,23 (7.78) 

Rearranging, 

Zr,23 = ~ [zr,22 + zr,33 - ( Z:) 2 

z(23)] (7 . 79) 

Then substituting (7.61) with j = 2 and j = 3, 

zr,23 == zr,32 = ~ [ (Z:f z(24) + (Z:f z(3·1) - (Z:) 2 

z(23)] 

N] (Z.(2-t) - Z.(23) Z(34)) 
2 N 2 + N 2 

2 3 
(7.80) 
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Equations could be written for the last remaining short-circuit test with terminal 1 
excited and terminal 3 grounded, but it is apparent from (7.71) and (7.80) that any 
off-diagonal element of [Zr] may be calculated by 

z . = z . = Nf (Z(j4) - Zuk) + z(k4)) 
-r,Jk -r,kJ 2 NJ Nf j=/=- k; j,k= 1,2,3 (7.81) 

Once again, this result may be generalized to a transformer with K windings. 

z . = z . = N'f<: (ZUK) - Zuk) + z(kK)) 
-r,Jk -r,k3 2 NJ Nf J

0

=/=-k; j,k=l,2, ... ,(K-1) 

(7.82) 
Using the boxed expressions (7.62) and (7.82), one may now calculate all the elements 
of the symmetric reduced impedance matrix [Z,.] defined in (7.21) from the short-circuit 
impedances of the transformer. 

1.3.2 Inverting the Reduced Impedance Matrix 

The symmetric reduced impedance matrix [Z,.] in (7.21) can be inverted to obtain the 
symmetric reduced admittance matrix, an equivalent description of the 3-port network 
in Fig. 7.9(a). 

(7.83) 

The inverse of a complex matrix may be obtained by the same methods used for a real 
matrix, namely, by using cofactors or an LU decomposition, but complex arithmetic is 
avoided altogether in the following algorithm [10]. 

To invert an (n x n) complex matrix, let 

[Z] = [A]+ j[B] (7.84) 

where [A] and [B] are real-valued. The following (2n x 2n) block-partitioned matrix is 
formed: 

[Z] = [ [A] -[B] l 
[B] [A] (7.85) 

The real-valued matrix [Z] is inverted using any suitable method to obtain a result which 
may be partitioned as follows, giving two new (n x n) matrices [C] and [D]. 

[zi-1 = [ [cJ -[nJ ] 
[D] [C] 

(7.86) 
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By definition, the identity matrix results from multiplying a matrix by its inverse. 

[I] 

Thus, 

[.iHzi-1 

[ 
[A] -[B] l [ [C] -[D] l 
[B] [A] [D] [C] 

[ 
{[Al[C]-[B][D]} {-[Al[.D]-[Bl[C]} l 
{[Bl[C]+[Al[D]} {-[Bl[D]+[Al[C]} 

[Al[C] - [Bl[D] 

[Al[D] + [Bl[C] 

[I] 

[O] 

(7.87) 

(7.88) 

(7.89) 

Now, let a new (n x n) complex matrix [U] be defined in terms of [C] and [D] from 
(7.86). 

[U] = [C] + j[D] (7.90) 

Multiplying (7.84) and (7.90), 

{[A]+ j[B]} {[C] + j[D]} 

[Al[C]- [Bl[D] + j{[Al[D] + [Bl[C]} (7.91) 

Substituting (7.88) and (7.89), 

[Zl[U] = [I]+ j[0] [I] (7.92) 

By the definition of the inverse of a matrix, 

[zi- 1 = [U] = [C] + j[D] (7.93) 

Thus the inverse of an (n x n) complex matrix can be obtained by inverting a (2n x 2n) 
real matrix instead. 

'T.3.3 Obtaining the Admittance-Link Values from the Reduced 
Admittance Matrix 

The values of the admittances in the admittance~link model for a K-winding transformer 
are calculated from the elements of its reduced admittance matrix [Y rl using (7.51) and 
(7.52), derived in Section 7.2.5 and repeated in the following summary. 
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7 .3.4 Summary of Equations 

Using the equations derived in Sections 7.3.1 and 7.2.5, the values of the elements in the 
admittance-link equivalent circuit of Fig. 7.9(b) can be calculated from the short-circuit 
impedances of the transformer in three steps: 

1. Calculate the reduced impedance matrix [Zr] from the short-circuit impedances of 
the transformer using (7.62) and (7.82), repeated below. The short-circuit impe
dances are obtained either by calculation from the geometry of the winding layers 
as described in Section 6.1, or by measurement in the laboratory of the actual 
transformer as described in Section 6.3. 

zrjj ( :; ) 

2 

Z(iK) j= 1,2, ... ,(K-1) (7.94) 

z . = Nk (.z..UK) - .Z..uk) + z(kK)) 
-r,k3 2 NJ N'fc 

(7.95) 

j -j. k; j,k = 1,2, ... ,(K-1) 

2. Invert the reduced impedance matrix [Zr] by the algorithm in Section 7.3.2 or any 
suitable technique to obtain the reduced admittance matrix [Yr]. 

3. Calculate the admittance-link values from the elements of the reduced admittance 
matrix [Y rl using (7.51) and (7.52), repeated here. 

'J!..jk -Y "k -r,3 = -Y k. -r, 3 j < k; j,k= 1,2, ... ,(K-1) (7.96) 

K-1 

'Jl..jK L Yr,jk j= 1,2, ... ,(K-1) (7.97) 

k=l 

After the admittance-link values are calculated by the three steps above, some simple 
checks can be performed to verify that the values are reasonable. First, the real and 
imaginary parts of each admittance-link value should have opposite signs [13, p. 638]. 
Second, for each complex sum 

Si= Lllkj + Lll;k j,k = 1,2, ... ,K (7.98) 
k<j k>j 



218 Duke University Section 7.3.5 

Table 7 .1: Calculated Short-Circuit Impedances at 100 kHz 

Test Resistance Inductance Impedance 
(jk) R(jk) L(jk) Z(jk) 

(ohms) (henrys) (ohms) 

(12) 0.5869 2.031 X 10-6 (0.5869 + jl.276) 
(13) 1.493 5.091 X 10-6 (1.493 + j3.199) 
(14) 2.527 8.582 X 10-6 (2.527 + j5.392) 
(23) 0.6814 2.358 X 10-6 (0.6814 + jl.482) 
{24) 1.716 5.849 X 10-6 {l.716 + j3.675) 
(34) 0.7758 2.685 X 10-6 (0.7758 + jl.687) 

the real part should be positive, and for all but the highest frequencies where capacitive 
effects dominate, the imaginary part should be negative [13, p. 636]. And third, the first 
(K-1) of these sums should be equal to the corresponding diagonal elements of [Yr], an 
observation which follows directly from (7.35), (7.43), and (7.47). 

Si= Yr,ii j= 1,2, ... ,(K-1) (7.99) 

7.3.5 Calculation Example 

In this section, it is shown how the boxed equations in summary Section 7.3.4 are used 
to calculate the set of admittance-link values for an example transformer. The 4-winding 
EE-core transformer described in Section 6.1.1 and used for the numerical example there 
is used here as well. 

Section 6.1 details the calculation of the short-circuit resistance R(13) and the short
circuit inductance L(i3) of the transformer at 60°C and 100 kHz. Following that example, 
and using data from Tables 6.1, 6.2, 6.3, and 6.5, the remaining short-circuit resistances 
and inductances are calculated, with the results given in Table 7.1. These numbers are 
also contained in the plotted data of Figs. 6.5 and 6.6. The short-circuit impedances in 
the last column of Table 7 .1 are calculated as 

(7.100) 

where the angular frequency w = 271" f for f = 100 kHz. These six impedances are all 
that is needed to calculate the parameters of the admittance-link model. However, the 
resulting parameter values are valid only for a single frequency; they must be recalculated 
for each frequency of interest. 

Throughout this example, impedances and admittances are expressed in the rectan
gular form for complex numbers to facilitate their addition and subtraction. The data in 
this example are typically written with four significant figures to guard against rounding 
error in later calculations, although it is known that the actual precision of the data is 
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much less. The three subsections below correspond to the three steps for calculating the 
admittance-link values outlined in Section 7.3.4. 

Step I-Calculate the Reduced Impedance Matrix 

From the six short-circuit impedances of the transformer listed in Table 7.1, and the 
fact that each of the four windings of the transformer has 26 turns, the elements of 
the reduced impedance matrix [Zr] are calculated, thus defining the hypothetical 3-port 
network of Fig. 7.7. First, the self-impedances are obtained from (7.94), repeated here, 
with K = 4. 

z .. -r,33 

zr,11 

Zr,22 

( :; ) 

2 

Z(;KJ 

(~;) 

2 

z(14) 

j= 1,2, ... ,(K-l) 

(~:) 

2 

(2.527 + j5.392) = (2.521 + j5.392) n 

(1.116 + j3.675) n 

zr,33 = (~:) 
2 

z(34) = (0.7758 + jl.687) 0 

The mutual impedances are obtained from (7.95), also repeated here. 

Ni( (z(jK) - z(jk) z(kK)) Z 'k = z k' = ~~-~~+ 
-r,1 -r, 3 2 NJ Nf 

j=/:k; j,k=l,2, ... ,(K-1) 

z _ NJ (Q(14) - Q(12) Z (24)) 
-r,21 - 2 N.2 + J\T2 

1 1Y2 

z -r,12 

262 
( (2.527 + j5.392) - (0.5869 + jl.276) (1.716 + j3.675)) 

2 262 + 262 

(7.101) 

(7.102) 

(7.103) 

(7.104) 

(7.105) 

(1.828 + j3.896) n (7.106) 

z -r,13 
z = NJ (Q(14) - Q(13) + Z(34)) 
-r,31 2 N.2 N.2 

1 3 

262 
( (2.527 + j5.392) - (1.493 + j3.199) (0.7758 + jl.687)) 

2 262 + . 262 

(0.0049 + jl.940) n (1.101) 
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Z N] (k(24) - k(23) Z(34)) 
-r,23 Zr,32 = 2 Nf + Nf 

262 
( (1.716 + j3.675) - (0.6814 + jl.482) (0.7758 + jl.687)) 

2 262 + 262 

(0.9052 + jl.940) 11 (7 .108) 

The reduced impedance matrix is thus 

[ 

Zr,11 Zr,12 Zr,13 l 
[Zr] = Zr,21 Zr,22 Zr,23 

z z z -r,31 -r,32 -r,33 

[ 

(2.527 + j5.392) (1.828 + j3.896) 
(1.828 + j3.896) (1.716 + j3.675) 

(0.9049 + jl.940) (0.9052 + jl.940) 

(0.9049 + jl.940) l 
(0.9052 + jl.940) 
(0.7758 + jl.687) 

Step 2-Invert the Reduced Impedance Matrix 

(7.109) 

The reduced impedance matrix in (7.109) is inverted by the algorithm described in 
Section 7.3.2 to obtain the reduced admittance matrix. 

[ 

(0.3048 - j0.6661) 
lYrl = [zri-1 = (-o.34s1+jo.1120) 

(0.04908 - j0.1225) 

(-0.3481 + j0.7720) (0.04908 _ j0.1225) l 
(0.6591 - jl.468) · ( -0.3541 + j0.8040) 

( -0.3541 + j0.8040) (0.5723 - jl.277) 

[ 
L,n Y r,12 Y r,13 l 

- y y y - -r,21 -r,22 -r,23 

Y r,31 Y r,32 Y r,33 

(7.110) 

Step 3-Calculate the Admittance-Link Values 

The values of the elements in the admittance-link model of Fig. 7 .9(b) are calculated 
from the elements of [Y rl given in (7.110) as follows. Three of the values are obtained 
from (7.96), repeated here, with K = 4. 

'1!..jk -Y "k -r,1 j=fa k; j, k = l, 2, ... , (K-1) (7.111) 

'1!..12 - - Y r,12 (0.3481 - j0.7720) S (7.112) 

'1!..13 -Yr,13 (-0.0491 + j0.1225) S (7.113) 

'1!..23 -Y 23 -r, - (0.3541 - j0.8040) S (7.114) 

The remaining three admittance-link values are obtained from {7.97), also repeated here. 

K-1 

'1!..;K = L Yr,jk j=l,2, ... ,(K-1) (7.115) 
k=l 
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Table 7 .2: Admittance-Link Values 

Link Admittance 
1·k 'J!...;k 

(siemens) 

12 (0.3481 - 1·0.7720) 
13 (-0.0491 + 1"0.1225) 
14 (0.0058 - j0.0166) 
23 (0.3541 - 1"0.8040) 
24 (-0.0431 + 1·0.1080) 
34 (0.2673 - 1·0.5955) 

3 

'J/...14 L Y r,lk = Y r,11 + Y r,12 + Y r,13 

k=l 

(0.3048 - 1'0.6661) + (-0.3481 + j0.7720) + (0.04908 - j0.1225) 
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(0.0058 - 1'0.0166) S (7.116) 

3 

'J/...24 LY r,2k = Y r,21 + Y r,22 + Y r,23 

k=l 

(-0.3481 + 1·0.7720) + (0.6591 - 1'1.468) + (-0.3541 + j0.8040) 

(-0.0431+1·0.1080) S (7.117) 

3 

'Jl...s4 L Y r,3k = Y r,31 + Y r,32 + Y r,33 
k=l 

(0.04908 - j0.1225) + (-0.3541 + j0.8040) + (0.5723 - jl.277) 

(0.2673 - 1·0.5955) S (7.118) 

These admittance-link values, repeated in Table 7.2, completely define the admittance
link model for the example transformer at 60°C and 100 kHz. 

If d.esired, the checks for calculation errors described at the end of Section 7.3.4 may 
be carried out. First, the real and imaginary parts of each admittance-link value in 
Table 7.2 have opposite signs, as expected. Second, the following sums from (7.98) all 
have positive real parts and negative imaginary parts, as expected. 

81 lt.12 + 'J/...13 + 'J/...14 

(0.3481 - j0.7720) + (-0.0491 + j0.1225) + (0.0058 - 1·0.0166) 

(0.3048 - j0.6661) S (7.119) 



222 Duke University Section 7.4 

82 1!-12 + 1!.23 + 1!.24 

(0.3481 - j0.7720) + (0.3541 - j0.8040) + (-0.0431 + j0.1080) 

(0.6591 - jl.468) S (7.120) 

S 3 1!.13 + 1!.23 + ~4 

(-0.0491 + j0.1225) + (0.3541 - j0.8040) + (0.2673 - j0.5955) 

(0.5723 - jl.277) S (7.121) 

S4 1!.14 + 1!.24 + ~4 

(0.0058 - j0.0166) + (-0.0431 + j0.1080) + (0.2673 - j0.5955) 

(0.2300 - j0.5041) S (7.122) 

And third, S1, S2, and S3 above are equal to their respective diagonal elements in (7.110), 
as expected. No calculation errors are revealed by the three checks. 

7.4 APPLICATION OF THE ADMITTANCE-LINK 
MODEL 

Assumption 1 in Section 7.2.1, the assumption of high-permeability core material, is 
equivalent to saying that the core has negligible exciting current. For a real transformer, 
this is a reasonable assumption as long as the exciting current in the primary winding 
is small with respect to the primary current that drives the loads. It follows that the 
admittance-link equivalent-circuit model is unsuitable for transformers which are de
signed to store a large amount of energy. Also implied by this assumption is low core 
loss, often not the case for high-frequency operation. The inability of the admittance-link 
model to account for core loss is a recognized source of error, but no attempt has been 
made to quantify it. 

It is shown in Section 8.3 that the admittance-link model and the coupled-secondaries 
model presented in the next chapter contain exactly the same information in different 
forms. This difference creates advantages and disadvantages of one model relative to the 
other which is discussed further in that section. 

Another limitation of the admittance-link model, as well as the coupled-secondaries 
model, is that its parameter values vary with the frequency of sinusoidal excitation. In its 
basic form, the usefulness of this model for predicting transformer behavior under pulse
wave excitation is doubtful. However, the ease with which the admittance-link values 
can be calculated suggests that, using a computer, it might be practical to calculate the 
admittance-link values at the harmonics of the converter switching frequency, and in 
some manner apply those results to a Fourier decomposition of the excitation waveform. 
This possibility has not yet been investigated. Although the admittance-link model has 
not been thoroughly tested as part of the current research at Duke, its basis is sound 

-- -------
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and it might be a useful tool for predicting stray effects in multiwinding transformers. 
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Chapter 8 

Coupled-Secondaries Equivalent 
Circuit 

In Chapter 5, we detail how the field solutions of magnetic field intensity and current 
density in a transformer winding are applied to calculate the short-circuit impedances 
for the transformer. In Chapter 6 we present an example calculation of a short-circuit 
impedance at a specific frequency, and a comparison of measured and calculated short
circuit impedances over a range of frequencies. The goal in those two chapters is to 
replace laboratory measurement data with calculations based on field analysis in order 
to determine the component values for an equivalent circuit. One such equivalent circuit, 
the admittance-link model, is discussed in Chapter 7. A possible alternative to this 
admittance-link model for a multiwinding transformer is proposed by John Rosa in 
[15]. In the present chapter, we discuss the circuit proposed by Rosa and present two 
circuits which are modifications of Rosa's circuit. The second of these circuits, the 
Coupled-Secondaries Equivalent Circuit, is discussed in some detail and compared with 
the admittance-link model of Chapter 7. 

8.1 CIRCUIT DESCRIPTIONS 

Figure 8.1 shows a four-winding example of the circuit that Rosa proposes for model
ing multiwinding transformers. Rosa considers only the inductive components of the 
transformer, and the calculations he presents for determining the values of inductance 
are limited to low-frequency excitations. Neglecting the resistances of the windings, the 
K coupled coils of the transformer circuit are represented· by an ideal K-winding trans
former and (K-1) coupled secondaries. The mutual inductances between secondary 
windings are represented in Fig. 8.1 by the coupled inductors in each secondary winding; 
these are shown as linear inductors with dashed lines connecting related mutual com
ponents. Examining Rosa's model, we see that the terminal voltages in phasor form for 
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Figure 8.1: Equivalent circuit of a four-winding transformer as proposed by 
Rosa [15]. The transformer-leakage-inductance effects arc modeled by the 
self- and mutual inductances. 
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this circuit are expressed as 

~ 

(~: V 4) -jwLnls,1 -jwL12ls,2 -jwL131s,3 

(Z: L) - jwL3ils,1 - jwL32ls,2 - jwL33[5
1
3 

V4 
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(8.1) 

(8.2) 

(8.3) 

(8.4) 

where the Lii terms are self-inductances and the Ljk terms are mutual inductances 
between the windings. 

Rosa's circuit model as shown presents some conceptual difficulties because the mu
tual or coupled inductors in each secondary are not actual circuit elements that exist 
in series with the self-inductances of the secondary windings. The voltage drop in any 
particular secondary winding due to mutual coupling effects is produced not by current 
in the effected winding but rather by current flowing in some other secondary. Therefore 
it is confusing to draw these mutual terms as actual circuit elements as Rosa does in 
Fig. 8.1. 

An alternate way to represent the coupling of the secondaries of a multiwinding 
transformer which avoids the use of such coupled inductors is shown in Fig. 8.2. In this 
figure, current-controlled voltage sources with gains ){ ik 

(8.5) 

are used to represent the coupling between the secondaries. The equations which describe 
this circuit are 

V1 ( ~: L) - ){ 11Ls,1 - ){ 12ls,2 - ){ 131s,3 (8.6) 

V2 ( z: L) -lL2ils,1 - lL22ls,2 - lL23ls,3 (8.7) 

~ (~: L) -&ils,1 -&21s,2 - }f_ggls,3 (8.8) 

V4 L (8.9) 

As in (8.1) to (8.3), representing the circuit of Fig. 8.1, voltage drops in (8.6) to (8.8) 
are caused by each secondary's self-current and the currents in the other two secondary 
windings. Comparing the two circuit diagrams, we see that each of the self- and mutual 
inductances of Fig. 8.1 have been replaced in Fig. 8.2 by a current-controlled voltage 
source. For a direct equivalence to Fig. 8.1, the gains of the controlled sources should 
be written 

(8.10) 
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Figure 8.2: A modification of Rosa's circuit where the coupling between the 
secondaries is modeled using current-controlled voltage sources. 
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Figure 8.3: The 3-port coupled-secondaries model is a further modification 
of Rosa's circuit model that characterizes the coupled secondary windings 
of a four-winding transformer . as a three-port, nct;work. For a K-winding 
transformer, a (J(-1)-port network is used to model the (K-1) coupled sec
ondaries. 
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However, if the relationships between the currents and voltages are expressed in terms 
of gains, we no longer are limited to representing only t,he inductive effects in the mul
tiwinding transformer, but can include more general impedance effects. 

A third and potentially more useful way to represent the effects of leakage impedance 
is to treat the (K-1) secondaries of the /(-winding transformer as an (K-1)-port "black
box" network as shown in Fig. 8.3. This figure shows a three-port network in which each 
port models the voltage drop Lhat appears in a particular secondary winding due to 
both the self- and mutual effects in the transformer secondary windings. As described 
in Section 7.1, these port voltages-labeled here as Vs 1, V s 2 , and V s 3-are written in 

' ' ' general terms for a three-port network as 

V S,l 

V s,2 

V S,3 

Zs,1ds,1 + Zs,1ds,2 + Zs,13Ls,3 

Z s,2ils,1 + Z s,22Is,2 + Z s,23ls,3 

z S,3ilS,l + z S,3dS,2 + z S,331S,3 

This set of equations can be recast into matrix form as 

[V sl = [Zs] [ls] 

(8.11) 

(8.12) 

(8.13) 

(8.14) 
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[v S,I V S,2 V S,3r 

[ls,1 ls,2 1~,3r 

[ 

Z S,11 z S,12 z S,13 l 
[Zs] = Zs,21 Zs,22 Zs,23 

Z S,31 Z S,32 Z S,33 
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(8.15) 

(8.16) 

(8.17) 

The terms on the diagonal of the [Zs] matrix represent the self-impedances of the sec
ondaries, and the off-diagonal terms represent the effects that the various currents have 
on the other secondary windings. The subscripts of each entry in this matrix denote 
both the windings with which the impedance is associated and the row-column location 
of the entry. 

IT all of the elements in the impedance matrix (8.17) are purely inductive, then the 
three-port representation of Fig. 8.3 yields the same equations that Rosa presents for 
his purely inductive circuit model shown in Fig. 8.1. Since we are concerned here with 
both inductive and resistive effects in the transformer, we will maintain the generality 
of modeling the three-port network as a network that can contain both resistive and 
inductive components. We make the restriction that the network cannot contain any 
capacitive elements since this report does not address transformer winding capacitance. 

From Fig. 8.3, we can write the terminal voltages in terms of the voltages of the ideal 
transformer and the port voltages of the 3-port network. 

VI (N1 L) -VS I 
N4 ' 

(~: L)-vs,2 

( N
3
L)-Vs3 

N4 - ' 

L 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

Substituting (8.11) to (8.13) in for the port voltages V s,1 , V s,2 , and V s,3 , we can express 
the transformer terminal voltages in terms of the currents and impedances associated 
with the coupled-secondaries ( K -1 )-port network 

V 1 (~: L) - Z s,11ls,1 - Z s,12ls,2 - Z s,131s,3 (8.22) 

(~: L) - Zs,2ils,1 - Zs,22£s,2 - Zs,23ls,3 

(~: L) - Zs,3ils,1 - Zs,32ls,2 - Zs,331s,3 

L 

(8.23) 

(8.24) 

(8.25) 
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In the following section we look at the coefficients of the three-port impedance matrix 
[Zs] more closely and describe methods for determining the values of these coefficients 
through laboratory measurements. 

8.2 DETERMINING THE TERMS OF THE 
IMPEDANCE MATRIX 

8.2.1 Self-Impedance Terms 

The self-impedance terms, alias the diagonal terms, of the three-port-network impedance 
matrix [Z 8 ] can be determined from a set of short-circuit tests involving the primary 
winding and each of the secondary windings. By short-circuiting the primary and excit
ing one secondary with each of the other secondaries open-circuited, the multiwinding 
transformer for this test condition is, in effect, reduced to a two-winding transformer. 
The impedance seen by the source on the excited secondary in this case is the short
circuit impedance between the particular secondary and the primary winding. If the 
secondary winding labeled one in Fig. 8.3 is excited while the primary winding labeled 
four is short-circuited, the impedance that is measured is the short-circuit impedance 
between windings one and four reflected to winding one. Thus we see that the diagonal 
terms Z S,ii of the impedance netwo_rk are identical to the short-circuit impedances Z (j4) 

discussed in Chapter 5. 1 

For the four-winding transformer of Fig. 8.3, we can perform three short-circuit tests 
in which the primary winding is shorted to determine the three diagonal elements of 
the coupled-secondaries 3-port-network matrix [Z 8 ]. The recognition that each of these 
diagonal elements, or self-impedances, represents the same physical phenomenon that we 
earlier called the short-circuit impedance between two windings is critical to avoiding an 
erroneous assumption that one might make upon examining Figs. 8.1 and 8.3. In each 
of these diagrams, it initially appears that the presented model assumes perfect coupling 
between the primary winding and each secondary since there are no leakage elements in 
the primary circuit. This is not the case, however. Rather, the leakage impedance that 
exists between the primary and each of the secondaries is included as part of the three
port secondary network, therefore, no leakage-impedance elements exist in the primary 
winding. 

Described above is the way in which the self-impedance for each of the secondaries 
can be measured in the laboratory. This is identical to the measurement of short
circuit impedance between each of the secondaries and the primary winding discussed in 
Section 6.3. Because of this relationship, the expressions derived in Section 5.2 for the 
short-circuit impedance between any two windings of a multiwinding transformer apply 

1 Since the primary is labeled winding four in the present chapter; the three short-circuit tests involving 
a shorted primary are Zc 14J, Zc24J, and Zc34J- In Chapters 5 and 6, the primary winding is labeled winding 
one so these three tests are called Zc 21 J, Zcsi), and Zc 41 J, respectively, in these earlier chapters. 
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equally well for calculating the diagonal elements of the coupled-secondaries (K-1)-port
network impedance matrix [Zs] where Zs,jj = Zu4) for j = 1,2,3. 

8.2.2 Mutual Impedance Terms 

In the previous section, the determination of the self-impedance or diagonal elements 
of the [ Z 8 ] matrix for the three-port network in Fig. 8.3 is shown to be equivalent to 
the short-circuit impedance calculations derived earlier. The determination of the off
diagonal or mutual terms of the impedance matrix is also related to these short-circuit 
tests, but the application of the field solutions for calculating these off-diagonal Zs,jk 
terms is not so straightforward. 

In the short-circuit tests of Chapter 6, we choose to excite one winding, short a 
second winding and then measure the current and voltage of the excited winding in 
order to determine the short-circuit impedance for each test. As is discussed above, 
if the primary winding is always shorted, then the (K-1) possible short-circuit tests 
yield the self-impedances which constitute the diagonal of the impedance matrix given 
in (8.17). If the same tests are performed but, in addition, the voltages across the open
circuited windings are also measured, then the mutual impedances between the excited 
winding and the open-circuited windings can be determined. For example, if winding 
four of the transformer shown in Fig. 8.3 is shorted, windings two and three are left 
open, and winding one is excited by the voltage VE, then an excitation current of LE 
flows into the positive terminal of winding one and 

ls,1 = -LE 

ls2=ls3=0 
' ' 

V 4 =O 

Under these conditions (8.22) to (8.24) become 

Zs,2ilE 

Zs3ilE 
' 

(8.26) 

(8.27) 

(8.28) 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

Thus, the straightforward short-circuit tests described in Section ~.3 can be adapted to 
measure the mutual impedances between the secondaries of a multiwinding transformer. 
The (14) short-circuit test described here yields not only 

VE 
Zs,11 = Z(14) = 1 -E 

(8.33) 
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but also 

Zs,21 
V2 

LE 
(8.34) 

Zs 31 
~ 

' LE 
(8.35) 

Additional short-circuit tests are needed to determine the other mutual impedances. 

Thus far in this section, we have shown that the mutual-impedance values can be 
determined in the laboratory by measuring the voltage that appears at each of the open
circuited windings during a given short-circuit test. We have no difficulty, therefore, 
measuring the mutual impedance coefficients, but what we would like in addition is a 
way to calculate these terms based on the transformer analysis techniques introduced in 
earlier chapters of this report. 

Figure 8.4(b) shows the low-frequency field-intensity diagrams labeled H(i4), H(24), 

and H(34) for the three short-circuit tests involving a shorted primary for the transformer 
shown in Fig. 8.4(a). These field-intensity diagrams are equivalent to the top three field
intensity diagrams of Fig. 5.2(b) except that the primary winding, which is composed 
of the two innermost layers, is now numbered as winding four and the secondary wind
ings are numbered from one to three. We know from our discussion of short-circuit 
impedances that the impedance between two windings is related to the field-intensity 
distribution in the transformer under short-circuit conditions. In particular, the leakage 
inductance is related to the volume integral of the I Hz( x) J 2 function and the winding 
resistance is related to the volume integral of the square of the current-density function, 
JJy(x)l2. The plots of H(i4),H(24), and H(34) can be used to determine the layer bound
ary conditions of field intensity from which we can determine the self-impedance terms 
of [Z8 ]. 

Figure 8.4(c) shows three low-frequency field-intensity diagrams that are unlike those 
we looked at earlier. These diagrams are labeled H(14)(24), H(14)(34), and H(24)(34)· As 
these labels imply, these plots represent the products of each pair of low-frequency field
intensity diagrams for the various short-circuit tests. John Rosa, who discusses only 
low-frequency field effects, proposes in [15] that the inductive portion of the mutual 
impedance between any two secondary windings is related to the volume integral of the 
product of the individual short-circuit field distributions for the two secondary windings. 
It is not clear how this method for calculating the mutual inductances can be extended to 
high-frequency operation where the distributions of Hz(x) in the core window become 
highly nonlinear and fields must be described in terms of phasor notation. This is 
not a problem, however, because both the self- and mutual impedance terms for the 
matrix [Zs] in (8.17) can be determined from the elements of the impedance matrix [Zr] 

introduced in the derivation of the admittance-link model discussed in Chapter 7. How 
this computation is carried out is detailed in the next section. 
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Figure 8.4: (a) Four-winding transformer cross section where the primary 
winding which comprises the two innermost layers has been numbered 
as the fourth winding to be consistent with Rosa. (b) . Low-frequency 
short-circuit field-intensity diagrams for the three short-circuit tests which 
involve a shorted primary for the four-winding transformer. ( c) Plots of 
the cross-products of each pair of short-circuit low-frequency field-intensity 
diagrams. 
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8.3 COMPARISON OF THE COUPLED-SECONDARIES 
AND ADMITTANCE-LINK.MODELS 

Using a four-winding transformer as an example, the admittance-link model is developed 
in Chapter 7 and the (K-1)-port coupled-secondaries model is presented in Section 8.1. 
Although the two models appear quite different, in fact, they contain exactly the same 
information. In Section 8.3.1, the equivalence of the two models is proven, again using a 
four-winding transformer as an example, and the relationship between the short-circuit 
impedances needed to determine the admittance-link-model parameters and the impe
dances of the coupled-secondaries model is derived. Since the frequency-dependent short
circuit impedances for a transformer can be calculated using the methods of Chapter 5, 
this relationship provides the information necessary to calculate the frequency-dependent 
elements of the coupled-secondaries-model impedance matrix [ Z 8 ], which can not be done 
using the meth~ds presented by Rosa in [15]. In Section 8.3.2, comments are made about 
some possible advantages of the admittance-link and coupled-secondaries models. 

8.3.1 Relationship Between the Three-Port Networks 

As an intermediate step in developing the admittance-link model, the three-port net
work of Fig. 7.9(a) is created. That network is characterized by the differential reduced 
impedance matrix [Zr] of (7.21) which is repeated here. 

(8.36) 

Although the development of the admittance-link model is completed in Chapter 7 by 
inverting [Zr] and considering more short-circuit tests, it is the matrix [Zr] which is 
directly related to the matrix [ Z 8 ] which defines the ( K-1 )-port coupled-secondaries 
model. The coupled-secondaries impedance matrix [Z 8 ] first appears in (8.14) which is 
repeated here for ease of reference. 

(8.37) 

The claim to be proven in this section is that the impedances in [ Z 8 ] may be obtained 
from the impedances in [Zr]- This involves performing a simple referral of the impedances 
in [ Z 8 ] to a common winding of the transformer, with a prime used in the conventional 
manner to indicate this referral. 

The proof begins with the transformation of the coupled-secondaries equivalent cir
cuit in Fig. 8.3. Its vector network equation (8.37) represents the following set of simul
taneous equation/, originally presented in (8.11) to (8.13). 

V -S,1 

V s,2 

V S,3 

Z s,111s,1 + Z s,12Is,2 + Z s,1sls,s 

Z s,211s,1 + Z s,221s,2 + Z s,2sls,s 

Z s,sils,1 + Z s,s2ls,2 + Z s,ssls,s 

(8.38) 

(8.39) 

(8.40) 
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Figure 8.5: The coupled-secondaries equivalent circuit of Fig. 8.3 with all 
other winding circuits referred to winding number 4. 

All voltages and currents in the circuit may be referred to winding number K = 4 by the 
following equations, producing the circuit of Fig. 8.5. Equations (7.4) and (7.5) 

can be written for our purposes as 

v'. -1 

['. 
-1 

(N") v . N · -1 
1 

(N;) l. 
N4 - 1 

V's. (N") Vs. - ,1 N · ,1 
1 

I's . = ( N;) ls . 
- ,1 N4 - ,1 

(8 .41) 

(8.42) 

(8.43) 

(8.44) 

To obtain the network equations associated with the new circuit, the inverses of rela
tionships (8.43) and (8.44), given by 

Vs. - ,1 
( N;) V' . N,i -S,1 (8.45) 

ls . ( N4) I' . (8.46) - ,1 N· -S,1 
1 
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are substituted into (8.38) through (8.40) to give 

( N1 V' ) N4 -S,1 
z ( N4 I' ) + z ( N4 I' ) + z ( N4 I' ) -S,11 N1 -S,1 -S,12 N2 -S,2 -S,13 N3 -S,3 (8.47) 

( N2 V' ) N4 -S,2 
( N4 1 ) ( N4 1 ) ( N4 1 ) Z s,21 Ni Is,1 + Z s,22 N

2 
Is,2 + Z s,23 N

3 
Is,3 (8.48) 

( N3 V' ) N4 -S,3 
( N4 1 

) ( N4 1 
) ( N4 1 

) Z s,31 Ni Is,1 + Z s,32 N
2 

Is,2 + Z s,33 N
3 

Is,a (8.49) 

Rearranging, 

V~,I ( N; ) 1 ( N; ) 1 ( N; ) 1 Nf Z s,11 Is,1 + NiN
2 

Z s,12 Is,2 + Ni Na Z s,1a Is,a (8.50) 

V' -S,2 ( N; ) 1 ( N; ) 1 ( N; ) 1 
N

2
N

1 
Z s,21 Is,1 + NJ Z s,22 Is,2 + N

2
N

3 
Z s,2a Is,a (8.51) 

V' -S,3 = ( N; Z ) I' + ( N; Z ) I' + ( N; Z ) I' N3N1 -S,31 -S,1 N3N2 -S,32 -S,2 Ng -S,33 -S,3 (8.52) 

These simultaneous equations are written in vector form as 

(8.53) 

where [Z~] is the impedance matrix of the new three-port network in Fig. 8.5. It is ap
parent from (8.50) through (8.52) that the elements of [Z~] for a K-winding transformer 
may be obtained from the elements of the impedance matrix [Zs] by 

(8.54) 

The matrix [Z~] is proven below to be equal to [Zr] of (8.36) by examining the 
equivalence of the voltage and current vectors in (8.36) and those in (8.53). To accomplish 
this, the relationship between the notation used in Chapters 7 and 8 to refer to the 
voltages and currents of the example four-winding transformer is first established. By 
comparing Figs. 7.3(a) and 8.3, it is clear that unprimed voltages of the form Vi are 
the same in both chapters. Also, the secondary currents Ii in Chapter 7 are equal but 
opposite to the currents Is,i of Chapter 8 and the primary currents in both chapters are 
equal. For a general K-port network, 

{ 
-I· I - -i -S,i - J. 

-1 

j= 1,2, ... ,(K-1) 
j=K 

(8.55) 

In Chapter 7, the transformation equation (8.42) is used to obtain the primed currents 
of the form I1 from Ii. Since this transformation equation is of exactly the same form 
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as (8.44) used to obtain I~,i from Is,j, (8.55) can be rewritten 

{ 
-I'-, -1 Is·= , ,1 I. 

-1 

j= 1,2, ... ,(K-1) 
j=K 

For a four-winding transformer, [I~] in (8.53) contains three components: 

[I~] = [I~,1 I~,2 I~,s]T 

Similarly, the [1~] current vector in (8.36) contains three components: 

[I']= [I' I' I']T -r -1-2 .!.-3 

Comparing (8.56), (8.57), and (8.58), it can be concluded that 

[I~]= -[I~] 

Section 8.3.1 

(8.56) 

(8.57) 

(8.58) 

(8.59) 

To finish determining the relationship between [Zr] of (8.36) and [Z~] of (8.53), we 
must look at the voltage vectors [f-d4] and [V~]- To begin, the expressions for differential 
voltages (7.15) and (7.16) are repeated below. 

V-k -1 

V'- -V. 
-1 -

(8.60) 

(8.61) 

Equation (8.61) reflects the choice of winding four as a reference by setting k = 4 in 
(8.60). 

To compare the voltage vectors in (8.53) and (8.36), it is apparent from Fig. 8.5 and 
(8.61) that 

V~.i = V4 -Vi= -Vi4 j = 1,2,3 (8.62) 

Since [L4] = [V14 V 24 ~ 4]T and [V~] = [V~,1 V~,2 V~,3]T, we see from (8.61) and (8.62) 
that the two voltage vectors are equal but opposite. 

(8.63) 

Since the current and voltage vectors in (8.53) are both the negative of those in (8.36), 
and since both equations describe the same transformer, the impedance matrices must 
be the same. 

(8.64) 

Because of this equivalence, the elements of [Zr] may be substituted into the left-hand 
side of (8.54) to give the relationship between corresponding elements in the (K-1)-port
network reduced impedance matrix [Zr] for the admittance-link-model and the coupled
secondaries impedance matrix [Z8 ]. 

Zr,jk = ( ;tk) Zs,jk (8.65) 
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Rearranging this gives us 

z . _ (N;Nk) z . 
-S,Jk - Nk -r,Jk (8.66) 

Since the components of the impedance matrix [Zs] of the coupled-secondaries model 
can be calculated from the components of the reduced matrix [Zr], and the components 
of [Zr] and be calculated from the short-circuit impedances for the transformer, we can 
substitute (7.94) and (7.95) into (8.66) to determine the elements of [Zs] in terms of the 
short-circuit impedances Z (jK), which is what we have been seeking. 

Zs .. - ,JJ 

Zs,jk 

z(jK) j= 1,2, ... ,(K-1) 

z . _ N;Nk (z_(jK) - Z..(jk) Z(kK)) 
-S,k3 - 2 NJ + Nf 

j-j.k; j,k=l,2, ... ,(K-1) 

(8.67) 

(8.68) 

Equation (8.67) is consistent with our assertion in Section 8.2.1 that each diagonal term 
of the ( K-1 )-port coupled-secondaries impedance matrix [Zs] is equal to the short-circuit 
impedance seen by the /h secondary winding when the primary K th winding is shorted. 
Equation ( 8 .68) allows us to determine the off-diagonal terms of [Zs] from the short
circuit impedances that can be obtained from laboratory measurements or calculated 
using the methods of Chapter 5, something we were unable to do in Section 8.2.2 by 
following Rosa's proposed procedure. Equations (8.67) and (8.68) together enable us to 
compute all parametric values in the coupled-secondaries model. 

8.3.2 Merits of Each Model 

As shown in the previous section, the admittance-link model and the coupled-secondaries 
model contain exactly the same information; therefore, the user may chose whichever 
model is best suited to a particular application. Neither the admittance-link model nor 
the coupled-secondaries model has yet been tested by the authors in computer-based 
circuit simulation; nevertheless, some general comments are included here about the 
expected advantages and disadvantages of each. 

The admittance-link model pictured in Fig. 7 .9(b) has simplicity as its primary ad
vantage, with no transformers and no controlled voltage or current sources present. 
Each admittance link may be modeled as a resistor in combination with either an in
ductor or a capacitor, although the resistor may have a negative value. Negative resis
tances can be avoided by using the coupled-secondaries model instead. Disadvantages of 
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the admittance-link model are apparent from the ad.vantages of the coupled-secondaries 
model described below. 

A more realistic representation of the transformer can be had for the price of addi
tional complexity with the coupled-secondaries model of Fig. 8.3. The actual voltages 
and currents of the transformer windings are present in this model, instead of those 
quantities referred to a common winding as in the ~dmittance-link model. In addition, 
the winding circuits are all "floating" with respect to one another, instead of being tied 
together at either the dotted or the undotted terminals of the transformer. Although the 
three-port network of the coupled-secondaries model does "link" three of the winding 
circuits, it is evident in the controlled-source representations of that network in Fig. 8.2 
that there is no direct connection there. 

Because the coupled-secondaries model is more realistic, it is more versatile than 
the admittance-link model. The circuits associated with different windings may be tied 
together in ways other than.what is internal to the admittance-link model. For instance, 
to model a power converter with output voltages of + 12 V de and -12 V de, the dotted 
terminal of one winding of the transformer is typically connected to the undotted termi
nal of another. This configuration cannot be modeled directly with the admittance-link 
equivalent circuit; some form of external "isolation transformer" must be included in 
the model to reverse the polarity of one output. The coupled-secondaries model should 
be better suited for studying the effects of stray capacitances. Interwinding capaci
tances, calculated from the geometry of the transformer, can be inserted directly into 
the coupled-secondaries model as discrete elements which link one winding circuit to 
another. There, the capacitors experience the actual voltages expected to be present in 
the transformer, rather than some combination of referred voltages. 

Although the coupled-secondaries model provides more versatility, its complexity is 
its main disadvantage. For a circuit-simulation program that does not accept the impe
dance or admittance matrix of a (K-1)-port network as input, the (K-1)-port network 
has to be modeled using current-controlled voltage sources as shown in Figs. 7.7 and 
8.2, or voltage-controlled current sources as shown in Fig. 7.8. However, the real and 
imaginary parts of those controlled-source impedances and admittances must typically 
be modeled separately, producing a total of twelve controlled sources for a four-winding 
transformer. In spite of this large number of controlled sources, only three state variables 
are involved, usually chosen to be three of the winding currents. If a time-domain simu
lation were undertaken, this low number of state variables could be an advantage relative 
to the six state variables associated with the six admittance links of that model, albeit 
those six variables are not completely independent. Another potential problem with 
employing the admittance-link equivalent circuit in time-domain simulations stems from 
the possibility of developing cut-sets of inductive links for a multiple-output transformer 
experiencing switching load currents. 

Based on these advantages and disadvantages, it is impossible to judge at this junc
ture which model is "better". Knowing the specific circumstances of the modeling to be 
performed can give some indication as described above, but, until some actual computer 
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simulations are run, it is difficult to predict which model will cause fewer computational 
difficulties. 
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Chapter 9 

CONCLUSIONS 

In Part I of this report, a practical method is derived for calculating-prior to construc
tion-the short-circuit impedances of a multiwinding transformer as a function of fre
quency. These short-circuit impedances completely describe the ac-winding-resistance 
and leakage-inductance properties of the transformer. Experimental data are provided to 
substantiate the derived results, and two transformer equivalent-circuit models are pre
sented whose parameter values are obtained from these short-circuit impedances. The 
present chapter attempts to put the derived results in perspective relative to other work 
in the area of power-converter modeling. Section 9.1 describes how the present research 
is an extension of the existing literature, and Section 9.2 restates the assumptions un
derlying the derived results, explaining the limitations those assumptions impose on the 
application of the results. Finally, some ideas for future research are described in Section 
9.3. 

9.1 BACKGROUND AND REVIEW 

The research embodied in this report was undertaken for the ultimate purpose of develop
ing a better circuit model for the multiple-winding transformer, to be used for predicting 
cross-regulation in multiple-output de-to-de power converters. The research began with 
a comprehensive review of the existing literature, the subject of Part II of this report. 
The approach taken by each of several authors was evaluated and compared to the others, 
and through a combination of analysis and laboratory testing, one approach was selected 
as best meeting the needs of the research project. The approach adopted from the liter
ature [7,14,19] uses the winding layer as the fundamental unit of analysis to successfully 
predict ac winding losses from the magnetic-field-intensity distribution in the winding 
space of a transformer. Extending that pattern, expressions are derived in this report by 
which the ac winding resistances and the leakage inductances of a transformer can be cal
culated from its dimensions and the layout of its windings. Such winding-resistance and 
leakage-inductance calculations are used to predict the short-circuit impedances which 
can be used to model a transformer. 

243 
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_ Most of the related articles in the literature are devoted exclusively to calculating 
transformer losses for a given load condition [2,11,12,19,20]. The main issue addressed in 
these articles is the effect of winding layout and wire size on the total power dissipation 
in a given winding of a transformer. These articles do not apply the field solution to 
determine the terminal characteristics or equivalent-circuit parameters for a multiwind
ing transformer; instead, they are concerned with efficiency and the thermal limits of 
transformers operated at high frequencies. The reader is referred to the literature for 
more detail on such design considerations. 

In this report, the actual winding layers of a transformer are approximated in Chap
ter 2 by equivalent-foil windings which span the entire breadth of the core window. 
Knowing only the arrangement of the windings and the currents flowing in them, Chap
ter 3 shows how a simplified low-frequency field analysis is applied to obtain the solution 
for the frequency-independent magnetic field intensity between winding layers. Each _ 
equivalent-foil layer is then modeled as a finite portion of an infinite current sheet, with 
the boundary conditions of magnetic field intensity at the surfaces of the sheet deter
mined from the simplified field analysis. This approximation allows cumbersome Bessel 
functions to be avoided in deriving the results of Chapter 4. 

The complete boundary-value solution for the frequency-dependent profile of mag
netic field intensity inside a current sheet is derived from Maxwell's equations and illus
trated graphically in Chapter 4. The corresponding solution for the profile of current 
density across the current sheet is also derived, giving the same result obtained by Van
delac and Ziogas by an alternate derivation [19]. From the profiles of magnetic field 
intensity and current density, expressions are then obtained for the profiles of power 
density and magnetic-energy density in a current sheet. 

By applying the results of Chapter 4 to the set of short-circuit tests that can be per
formed on a multiwinding transformer, analytical expressions are derived in Chapter 5 
for the leakage impedances between all pairs of transformer windings. These equations 
depend only on the winding geometry and the frequency of excitation. Laboratory exper
iments designed to confirm the analytical results are described in Chapter 6, and· experi
mental data illustrate the accuracy and the limitations of both the ac-winding-resistance 
and the leakage-inductance calculations. A numerical example of these calculations is 
included. The experimental results have been further substantiated in other similar tests 
performed on several transformers not mentioned here. 

Because the set of short-circuit impedances for a transformer completely character
izes its winding-loss and leakage-inductance characteristics at a particular frequency, the 
short-circuit impedances can be used to calculate the parameter values for some single
frequency circuit models of the transformer. Two different but closely related models are 
proposed, the admittance-link model of Chapter 7, and the coupled-secondaries model 
of Chapter 8, but neither has been tested yet in simulations. Although these single
frequency sinusoidal-excitation models are not directly usable in modeling the trans
former in a power converter, it is believed that some derivatives of them may be. 

Equations are now in hand for calculating the equivalent short-circuit resistances and 
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inductances for a trial transformer design. Because the calculations are lengthy and quite 
tedious, they are best done by computer. To be more useful, a computer program that 
calculates these results might also be written to calculate automatically the parameters 
associated with one of the proposed transformer models. 

9.2 REVIEW OF THE ASSUMPTIONS 

In deriving a simplified field solution for the magnetic-field and current-density distribu
tions in the winding space of a transformer, some major assumptions or approximations 
are made. Because these assumptions may or may not be valid for a particular trans
former, they impose certain limits on the applicability of the results reported in Part I. 
Therefore, it is worthwhile to review the assumptions and comment on their implications. 

1. It is assumed throughout the field analysis that the currents in the transformer 
windings are purely sinusoidal. Because most power-electronics applications do 
not have sinusoidal excitation, the results given here cannot be applied directly to 
the analysis of transformers in such circuits. The method of analysis employed here 
can be expanded to include nonsinusoidal current excitations through Fourier-series 
decomposition of the nonsinusoidal waveforms. This technique is demonstrated in 
[2,19,20]. 

2. The magnetizing impedance of the transformer is always assumed to be so large 
that it is neglected in the analysis and modeling here. This is classically a safe 
assumption when considering transformers wound on high-permeability materials 
such as silicon-steel. However, the assumption that the magnetizing effects can 
be neglected may give erroneous results where the transformer is used for energy 
storage, as in a flyback converter. In general, if the component of primary current 
that excites the core is much smaller than the component of primary current that 
drives the loads, the assumption of infinite magnetizing impedance is reasonable. 

3. All transformer winding layers are modeled as equivalent-foil layers that extend 
across the full breadth of the transformer core window. To match the de resistance 
of the actual winding layer, the conductivity of the equivalent-foil layer is adjusted 
by the layer-porosity factor r,. Windings of round, strip, and foil conductors ar-

. ranged in concentric cylindrical layers can be analyzed, but bifilar windings and 
those of Litz wire or twisted-wire bundles cannot. 

4. All magnetic flux in the transformer winding space is assumed to be parallel 
to the center leg of the core. This condition is brought about in the physical 
model of the transformer by assuming equivalent-foil windings and assuming that 
high-permeability magnetic material completely surrounds those windings. This 
parallel-flux assumption eliminates the difficult-to-compute "end effects," or cur
vature of the field lines, usually found near the ends of real layers. This approxi
mation has produced generally good agreement between predicted and measured 
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short-circuit impedances for transformers having ungapped pot cores and EE cores 
of high-permeability material. Although the maximum number of turns that fit in 
the bobbin have been wound in all layers, T/ has been as low as 0.5. An alternative 
approach that does not ignore the end effects is presented in [1, p. 84]. 

5. All transformer winding layers are analyzed as infinite current sheets, neglecting 
the curvature of the layers. Perry states that the error is small as long as the 
thickness of the layer is small relative to its radius of curvature [14], but he does not 
give quantitative limits. Nevertheless, good agreement has generally been obtained 
between predicted and measured short-circuit impedances using the current-sheet 
approximation. If more accurate results are desired, Perry carries out the analysis 
in cylindrical coordinates [14], but the resulting expressions contain cumbersome 
Bessel functions. Goad, on the other hand, begins with the cylindrical-coordinate 
solution but uses approximations for the Bessel functions [7]. 

6. Winding capacitance is always neglected in the analysis and modeling reported 
here. Experiments have confirmed this to be a good assumption up to the frequency 
where the leakage inductance begins to resonate with the winding capacitance, the 
latter of which is not included in the present models. The importance of this 
shortcoming of the analysis has not been assessed. 

These are the important assumptions and approximations upon which the field analy
sis of this report is based. It is important to keep them in mind when applying the 
results because circumstances can be imagined that would contradict each one of these 
assumptions to the extent that the analysis would be invalid. 

9.3 FUTURE WORK 

While the completed research offers improvements in the ability to predict the high
frequency behavior of multiwinding transformers, much work remains to be done before 
achieving the ultimate goal of predicting cross-regulation in multiple-output converters. 
Some areas in which research might be continued are described here. 

The admittance-link and the coupled-secondaries equivalent circuits for a transformer 
have not yet been tested on a computer. Since they are mathematically equivalent, 
they should both give the same results when used with a circuit simulation program 
such as SPICE, but practical issues need to be addressed. For instance, how easy is it 
to calculate automatically the parameter values for each model from the short-circuit 
impedances of the transformer? Would the simulation program fail with one or the 
other of the models? Can results still be obtained if a magnetizing inductance, a resistor 
to account for core loss, lead inductances, and winding capacitances are added to the 
model? Under what conditions, if any, would significant ~umerical errors be generated 
in calculating the parameter values or performing the ac analysis? How easy would it 
be to extend each model to obtain a frequency-independent form that would be suitable 
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for simulating pulse-wave excitation as discussed below? To answer these questions, ac 
analyses could be performed with SPICE using model parameters calculated for actual 
test transformers. 

Because the parameter values of the admittance-link and coupled-secondaries equiv
alent circuits are derived from short-circuit-test data, either model should predict the 
results of short-circuit tests with little error. Since the transformer models are linear 
at a given frequency, the proposed models should also predict transformer behavior for 
any linear-load condition, but this must be confirmed experimentally. The steady-state 
regulation predicted by computer simulation using one of the models could be compared 
to the regulation measured in laboratory tests. Such experiments should reveal at what 
frequencies and under what conditions is it necessary to incorporate into the model vari
ous effects that were previously neglected, namely, the magnetizing inductance, the core 
loss, lead inductances, and winding capacitances. 

Once a solid understanding of transformer equivalent-circuit behavior is established 
for sinusoidal excitation, one can address the more challenging problem of nonsinusoidal 
excitation, specifically, the pulse-width-modulated current waveforms seen in de-to-de 
converters. Rather than a single frequency, many harmonics of the excitation frequency 
are present under conditions of pulse-wave excitation. To extend the single-frequency 
transformer model to predict transformer behavior with pulse-wave excitation, the fol
lowing three alternatives are envisioned. · 

What seems to be the most promising approach is to devise a more complex circuit 
model whose elements are independent of frequency, yet whose equivalent impedances 
model the frequency dependance of ac winding resistance and leakage inductance. This 
might be done by replacing each frequency-dependent resistance and inductance in the 
single-frequency equivalent circuit with a small network of linear circuit elements that 
approximates the frequency dependence. A balance would have to be established be
tween accurately approximating the frequency dependence and keeping the order of the 
resulting equivalent circuit manageable. 

A second way of handling nonsinusoidal excitation is through Fourier analysis. For 
linear loads, the sinusoidal response for each harmonic component of the excitation 
waveform could be calculated, and the results could then be summed together to yield 
the equivalent time-domain response. For nonlinear loads, where diodes are present 
in the output circuits of the transformer, the "field harmonic analysis" proposed by 
Vandelac and Ziogas might prove useful [19]. There, the different waveforms of magnetic 
field intensity in the interlayer spaces of the transformer windings are examined, and 
the losses are calculated from Fourier decompositions of those waveforms, taking into 
account both magnitude and phase relationships. 

The third possible way of analyzing nonsinusoidal excitation is to determine an 
"equivalent" sinusoidal frequency that could be used to predict essential features of 
the pulse-wave response. The equivalent frequency could be simply the fundamental 
frequency of the excitation, or it might be some other frequency that is derived from the 
shape of the excitation waveform. This approach appears less promising than the first 



248 Duke University Section 9.3 

two, but due to its simplicity, it should not be discarded without further examination. 
To model pulse-wave and high-frequency ac excitation, it is likely that winding ca

pacitance will have to be included in the transformer model. The typical resonant peak 
observed in plots of measured short-circuit resistance -and inductance causes a substan
tial deviation between measured and predicted values beginning only several harmonics 
higher than typical converter switching frequencies. By examining the energy stored in 
the electric fields inside the transformer winding space, a suitable method might be found 
for calculating the critical winding capacitances from the geometry of a trial transformer 
design. 

Experience has shown that the most reliable way to advance the limits of knowl
edge is methodically, one step at a time. This research report represents a first step in 
developing techniques for predicting cross-regulation in multiple-output converters. It 
provides a complete derivation from Maxwell's equations of the important results, with 
all assumptions and approximations clearly identified. The purpose of such detail is to 
convince a reader of the integrity of the results, and to convey a fundamental under
standing of their limitations. Having established this solid foundation of knowledge on 
the subject of high-frequency effects in transformers, and having obtained encouraging 
laboratory results to date, it is expected that further research in this direction will prove 
fruitful. 
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Appendix A 

Derivation of Diffusion Equation 
{4.1) _in Terms of E from 
Maxwell's Equations 

For our purposes here, we choose to write Maxwell's field equations in their differential 
form as, 

where 

D 
E 

J 

VxE 
aB 
at 

VxH J an 
+ at 

v'•D p 

v'•B 0 

electric flux density (in C/m2
) 

electric field (in V /m) 

current density (in A/m2
) 

B magnetic flux density (in T) 

H magnetic field intensity (in A-t/m) 

p - volume charge density (in C/m3
) 

We also have the constitutive relatibns, 

B 

J 

D 

A-1 

µH 

uE 

EE 

(A.1) 

(A.2) 

(A.3) 
(A.4) 

(A.5) 

(A.6) 
(A.7) 
(A.8) 
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where 

µ 

E 

<T 
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permeability (in H/m) = µoµ,. 

permittivity (in F /m) = E0 E,. 

conductivity (in S/m) 

Appendix A 

· (A.9) 
(A.10) 

with the permeability of free space µ 0 = 4:ir x 10-7 H/m and the permittivity of free 
space Eo = 8.854 x 10-12 F /m. For copper the relative permeabilityµ,. and the relative 
permittivity E,. are both taken equal to one. 

We can use these equations to derive the diffusion equation given in (4.1) as follows, 

1. Take the curl of both sides of (A.1) 

2. Use (A.6) to replace Bin (A.11) by µH 

VxVxE 

3. Substitute (A.2) for V x H 

aH 
V X (-µ-) at 

a 
-µ-(V x H) at 

a an 
V x V x E = -µ-(J + -) at at 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

4. Use (A.7) and (A.8), respectively, to write J and Din terms of Eon the right side 
of (A.14) 

5. Using the general vector identity for the curl of the curl of a vector 

V x V x A= V(V • A) - V 2 A 

we can write, 

VxVxE V(V •E)-V2E 

V(V • D/E) - V 2E 

(A.15) 

(A.16) 

(A.17) 

6. Now if we assume that there is no free charge density in the conductive material 
(p = 0), then V • D = 0 according to (A.3), and we have 

(A.18) 
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7. Equations (A.15) and (A.18) combine to give, 

2 aE a2E 
V E = µu at + µE at2 (A.19) 

8. If we now include in our derivation the assumption that the time-varying fields 
are sinusoidal, we can remove the explicit time dependence by rewriting equation 
(A.19) in phasor (complex variable) form. As is shown in equation (1.4) of Section 
1.2 we can write the vector phasor for the electric field as 

E = Ez(x, y, z)ax + Ey(x, y, z)ay + Ez(x, y, z)az 

where the three phasor components Ez , Ey and Ez are given by 

·o Ez(x,y,z) Ez Eze':s 
E (x y z) = E = E ei8

11 -Y'' -Y Y 
Ez(x, y, z) = Ez = Ezei8= 

(A.20) 

We can therefore write, for example, the real, time-varying x-component in terms 
of the associated phasor x-component as 

Ez(x, y, z, t) v'2 Re( Ezeiwt) 
v'2 Re(Eze;(wt+8.,)) 

(A.21) 

(A.22) 

It is clear from the form of (A.22) that taking any spacial derivative of the real 
part Ez(x, y, z, t) simply corresponds to taking the same derivative of the phasor 
component Ez(x, y, z). However, if we take a time derivative of the real part, we 
get 

(A.23) 

which corresponds to the multiplication of the phasor component by jw. Each 
additional time derivative of the real part corresponds to an additional factor of 
jw for the phasor component. We can therefore write three rules for transforming 
equation (A.19) into phasor form 

Si Ez(x, y, z, t) ~ jiEz(x,y,z) where i = x,y or z 

StEz(x, y, z, t) ~ jwk,(x, y, z) 

a2 
at2 Ez(x, y, z, t) ~ -w2 Ez(x, y, z) 

Finally, using the above three rules, we can rewrite equation (A.19) as 

jwµuE -w2µEE 

(jwµu - w2µE)E (A.24) 
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or, using "ff= Jjwµ,u - w2µ,f we have 

(A.25) 

The above result is the diffusion equation that we seek. This equation states that 
the spacial distribution of a sinusoidally varying electric field in a medium is related 
through the complex coefficient "ff to the angular frequency w of the field variation and 
to the characteristics of the transmitting media. In this expression the coefficient "ff is 
the complex wave number whose conjugate is designated as "ff*. 
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Derivation of Diffusion Equation 
( 4.9) _ in Terms of H from 
Maxwell's Equations 

We can follow a trail very similar to that used to derive the diffusion equation in terms 
of the electric field E to derive the the analogous diffusion equation given in ( 4.9) in 
terms of H as follows: 

1. Take the curl of both sides of (A.2) 

(B.l) 

2. Using the vector identity for the curl of the curl of a vector given in (A.16) and 
substituting Bfµ for Hin the dot-product term we write, 

VxVxH V(V •H)- V 2H 

V(V •Bfµ) - V 2H 

-V2H 

where (A.4) is used to eliminate the dot-product term. 

(B.2) 

3. Expanding the right side of (B.l) using the fact that the curl of the sum of two 
vectors is the sum of the curl of the vectors, we can combine (B.2) and (B.l) 

an 
(V X J) + (V X -) at 

aE 
(V x uE) + (V x €-) at 

B-1 

(B.3) 
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4. Recalling (A.l) and (A.6) we can rewrite (B.3) as 

aB a2B -u-= - €---= at at2 

aH a2H 
µu at + µ£ at2 (B.4) 

5. Assuming sinusoidal steady-state excitation, we can use the same approach as in 
Step 8 of Appendix A to write (B.4) in phasor notation 

6. Finally, we can collect terms to yield 

where ls;_= yjwµu - w2µ£ as before. 

(jwµu - w2µ£)H 

.k.2H 

(B.5) 

(B.6) 

Equation (B.6) is the result we sought to prove. This diffusion relation is identical in 
form to the diffusion equation for the electric field given in (A.25). The magnetic field 
intensity and electric field at any point in the transmitting media are both related to the 
frequency of the field variation and the material characteristics of the media. 



Appendix C 

Derivation of Equation ( 4.27) 
from _(4.21) and of Equation 
{4.28) from {4.26) 

We are given in Equation ( 4.21), 

V x J.(x,y,z) = -,&2H(x,y,z) (C.l) 

In rectangular coordinates, we expand the curl on the left-hand side of the above equation 
as 

V X J. 

(C.2) 

In the case we are modeling, we assume there is current only in the y-direction and that 
this current varies only with x. Therefore we write 

and, 

J =J =0 .::....z -z 

BJ_y 0 
az = 

With these assumptions we can write the curl expansion above as 

T'7 J BJ y(x) A 

v X = ---az - ax 

C-1 

(C.3) 

(C.4) 

(C.5) 
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Our assumptions also state that the magnetic-field intensity function H(x,y,z) 1s a 
function that varies only with x and is directed only in the z-direction. Therefore, 

H(x,y,z) = Hz(x)az (C.6) 

If the result of (C.5) is used in the left side of (C.1) and the result of (C.6) is used in the 
right side of (C.1), we have as a result equation (4.27): 

(C.7) 

A very similar derivation for Equation (4.28) follows from (4.26). Equation (4.26) is 
repeated here, 

V X H(x,y,z) ~ J.(x,y,z) (C.8) 

Then as in the above derivation, we expand the curl in rectangular coordinates as 

In the case we are modeling, we assume the magnetic field is directed only in the z
direction and that this field varies only with x. Therefore we write, 

(C.10) 

and, 
aHz o a;;= (C.11) 

With these assumptions, we can write the curl expansion above as, 

(C.12) 

Since the current density is a function of x and is directed only in the y-direction, we 
h~ . 

J.(x,y,z) = Jy(x)a.y (C.13) 

Equating the right hand sides of (C.12) and (C.13) gives (4.28) directly 

aHz{x)A - -J ( )A ax ay - -Y X ay (C.14) 



Appendix D 

Physical Basis for the 
Distributions of Hz(x) and Jy(x) 

In Section 4.1.1, we describe the mathematical statement of the infinite-current-sheet 
field problem as the diffusion equation. Our mathematical analysis begins with Maxwell's 
equations and arrives at the diffusion equation as a result of making various simplifying 
assumptions. This concept of diffusion is useful here in obtaining a qualitative under
standing of the field and current distributions across a layer. Indeed, if we examine 
Figs. 4.2 and 4.3 we can easily see what appears to be a diffusion-like attenuation away 
from the surfaces of the current sheet. We should point out, however, that the prop
agation of electromagnetic energy across a conducting layer is physically distinct from 
the thermodynamic process of diffusion, although in certain cases it is mathematically 
equivalent. For this reason, a more complete understanding of the distributions of H z(x) 
and J:11 (x) is best obtained by considering a more relevant physical model, namely, the 
traveling wave. 

In Appendices A and B we derive the diffusion equation in terms of the electric field 
vector phasor E and the magnetic field vector phasor H . In each case, before introducing 
phasor notation, we obtain as an intermediate result a single partial differential equation 
in terms of only one field quantity, either E or H. These intermediate results appear as 
equations (A.19) and (B.4) in the Appendices, and are repeated here for clarity 

a2E aE 
µE 8t2 + µu at (D.1) 

a2H aH 
µE 8t2 + µu 8t (D.2) 

Equations (D.l) and (D.2) are commonly known as the telegraph equations since 
they were originally derived to explain the propagation of electromagnetic pulses down 
telegraph lines. They are, however, a direct reformulation of Maxwell's equations and 
may consequently be applied to solve a variety of field problems, including that of an 
infinite current sheet. In our application of the telegraph equations to an infinite current 

D-1 
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sheet, we arrive at the final field solutions in a series of steps that may be outlined as 
follows: 

1. Assume that the fields are sinusoidal functions of time and introduce phasor 
notation to reduce the telegraph equations to the form of diffusion equations. 
(Appendices A and B) 

2. Make the good conductor approximation that u » Wf and use this to simplify 
the expression for the complex wave number k_. (Section 4.1.2) 

3. Assume ·that the current density and the electric field are related through 
Ohm's law1 by J = uE, and use this to rewrite the equation for E in terms 
of J. (Section 4.1.2) 

4. Assume that both J. and H are functions of x only. (Section 4.1.2) 

5. Assume that His directed exclusively along z-axis while J_ is directed exclu
sively along the y-axis. (Section 4.1.2) 

6. Use Maxwell's equations to derive differential relationships between Hz( x) 
and ~y(x), so that one can easily be found from the other. (Section 4.1.4) 

7. Assume that the solution to the diffusion equation for Hz( x) has the general 
form of 

(D.3) 

and apply the boundary conditions at x = 0 and x = hcu. to obtain the final 
solution for Hz(x). (Section 4.2) 

8. Use the differential relationship found in Step 6 to directly calculate the so
lution for ~ 11 (x). (Section 4.2) 

A mathematically equivalent but physically more enlightening development might 
begin by directly solving the telegraph equations themselves, without using phasor nota
tion to first remove the explicit time dependence and reduce them to the form of diffusion 
equations. As they are written above, equations (D.l) and (D.2) are in terms of the time
varying vector fields E(x, y,z, t) and H(x, y, z, t). However, the math involved in solving 
these equations directly is greatly simplified is we introduce complex-number notation. 
If we assume that E(x,y,z,t) and H(x,y,z,t) are varying sinusoidally in time, then we 
can make use of equations (A.20) and (A.22) to rewrite the vector E(x, y, z, t) in terms 
of its corresponding vector phasor E 

E(x,y,z,t) = v'2Re [E(x,y,z)eiwt] (D.4) 

1The more familiar form of Ohm's law V = IR is just a special case of J = uE. We can see this 
by applying a voltage V across a round wire of cross-section A and length l, so that the electric field 

E = j = /A is along the wire and given by E = ~. Solving for V gives V = u~ I = RI, where 

R--l_ 
- uA. 
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Now if we define a complex-valued function of time E(x, y, z, t) such that 

E(x, y, z, t) = v'2 [E(x, y, z)efwt] (D.5) 

where the tilde designates a complex quantity, then we can write the vector E(x, y, z, t) 
as 

E(x,y,z,t) = Re [E(x,y,z,t)] (D.6) 

We henceforth refer to the quantity E(x, y, z, t) as the complex electric field, since its real 
part is precisely equal to the actual time-varying electric field. Note that the complex 
electric field may be obtained from the electric field phasor simply by multiplying the 
electric field phasor with ../2" eiwt. Thus, we may visualize the complex electric field in the 
complex plane as being equivalent to a phasor, lengthened by a factor of ../2", and rotating 
in a counterclockwise direction in the complex plane with an angular frequency w. In 
a completely parallel fashion, we can also write the magnetic field vector H(x, y, z, t) in 
terms of its associated complex magneti~ field2 H(x, y, z, t) as 

H(x,y,z,t) = Re [ii(x,y,z,t)] 

where H(x, y, z, t) is defined as 

H(x,y,z,t) = v'2 [H(x,y,z)efwt] 

(D.7) 

(D.8) 

Given the above definitions for the complex electric field (D.5) and the complex 
magnetic field (D.8) we can now write the general solutions to the telegraph equations 
(D.1) and (D.2) in complex form as 

E(x, t) 

H(x,t) 

Ei e(.kz+jwt) + E
2
e(-k_z+;wt) 

ft
1
e(kz+jwt) + ft

2
e(-k_z+jwt) 

(D.9) 

(D.10) 

where E1, E2, H1 and H2 are four arbitrary complex constants, and we have assumed 
that both the electric and magnetic fields are functions of x only. Thus, the actual solu
tions to equations (D.l) and (D.2) (which represent the physical fields) can be retrieved 
by taking the real part of (D.9) and (D.10), respectively. Note, however, that the com
plex form of the solutions as given in (D.9) and (D.10) satisfy the telegraph equations 
themselves, as can be verified easily by substituting (D.9) and (D.10) into the telegraph 
equations (D.1) and (D.2), replacing each real field quantity with its corresponding com
plex field quantity. Upon making such a substitution, we find that (D.9) and (D.10) are 
valid solutions to the telegraph equations provided that 

(D.11) 
2 The complex electric and magnetic fields as we define them here have no real physical significance. 

We merely find them a convenient mathematical tool which, if properly used, provide all the desired 
information on the actual fields within an infinite current sheet. 
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which is the same result that we obtain in Appendix A. Indeed, at this point we could 
proceed by applying a series of steps similar to those outlined above to arrive at the same 
final solutions that are stated in Section 4.2. However, as they are now written, equations 
(D.9) and (D.10) are already very useful to us in that they describe a superposition of two 
electromagnetic waves. It is this physical model that we find fundamental to a thorough 
understanding skin effect. 

Let us first consider equation (D.9) and explore some of its properties. Note that 
the first term on the right-hand side is a complex-number representation of a plane wave 
traveling in the -x-direction, and the second term on the right-hand side represents 
a plane wave traveling in the +x-direction. Equation (D.9), therefore, represents a 
superposition of two plane waves. These waves are called plane waves because they 
possess a surface of constant phase, or wavefront, that is planar. Another property of 
these two plane waves, although it is difficult to see from equation (D.9), is that they 
are sinusoidal in both time and space. We can more clearly see this sinusoidal behavior 
by focusing on the plane wave traveling in the -x-direction and extracting the real part, 
so as to obtain a mathematical description of the actual electric field plane wave. To do 
this, we first need to rewrite the complex wave number k as3 

(D.12) 

and the complex constant E1 as 

(D.13) 

The first term on the right-hand side of equation (D.9) can now be expanded as 

IEi iek1z ei(k2z+wt+liEi) 

IE1lek1z [cos(k2x +wt+ 0Ei) (D.14) 

+ j sin(k2x +wt+ 0Ei)] 

and taking the real part gives 

(D.15) 

From the form of equation (D.15) we can clearly see that, at every fixed point x in 
space, the electric field intensity varies sinusoidally in time with an angular frequency 
w. Likewise, if we look at a snapshot of the electric field intensity at any instant of 
time t, we see that the electric field varies as a damped sinusoid in the -x-direction 
with an exponential envelope that decreases by 1/e in a distance of 1/k, and shows 
a sinusoidal periodicity along the x-axis equal to 21r/k2. The amplitude of this wave, 
therefore, decreases as the wave "travels" in the -x-direction, and the amplitude of the 

3 Actually, there are two roots to equation (D.11), ±(k1 + k 2 j). We choose the positive root, which 
gives positive values for k1 and k2. The negative root would give us a physically meaningless result. 



Appendix D Modeling Multiwinding Transformers D-5 

electric field at x = 0 is given by IE1 I- We can get a sense of traveling from equation 
(D.15) by considering the relative location of a single wave peak as time progresses. ff 
the initial phase angle 0E1 is taken to be zero, then at time t = 0, there is a wave peak 
at x = O; however, as time advances, the position along the x-axis at which the peak is 
located is x = -wt/k2. In other words, the peak appears to move in the -x-direction 
and, since the envelope decreases in the -x-direction, the peak becomes attenuated as 
it moves. 

In a similar manner, we can extract the real part of the wave traveling in the +x
direction (the second term on right-hand side of (D.9)). Again, we can write the complex 
constant E2 in polar form as 

(D.16) 

and use this together with (D.12) to expand the second term on right-hand side of (D.9) 
as 

IE
2 

le-lc1zei(-lc2z+wt+IIE1) 

IE2le-/c1z [cos(-k2x +wt+ 0Ei) 

+ j sin(-k2x +wt+ 0Ei)] 

Using the identity cos(-x) = cos(x) and taking the real part of (D.17) we obtain 

Re [E2e-kz+iwt] = IE2le-/c1 z cos(k2x - wt - 0E2) 

(D.17) 

(D.18) 

which is also a sinusoidal plane wave. This wave, however, has its peaks driven in the +x
direction as time progresses. We can again demonstrate this by considering the relative 
location of a single wave peak as time progresses. Taking the initial phase angle 0E2 
to be zero, we observe that at t = 0 there is a peak at x = 0, just as in the previous 
case. For time t > 0, however, the same wave peak occurs at x = wt/k2; thus, the 
peak appears to move in the +x-direction. Nevertheless, since the exponential envelope 
of (D.18) decreases in the +x-direction, the wave peak is once again attenuated as it 
moves. 

We measure the amount of attenuation that a wave experiences by the skin depth4 , 

which is defined as the distance that a wave must travel to be attenuated by a factor 
of e-1. Note that this definition applies equally well to the wave traveling in the +x
direction as it does to the wave traveling in the -x-direction, and from equations (D.15) 
and (D.18) the skin depth is clearly given by 

(D.19) 

Likewise, at any instant in time, each wave has the same distance between adjacent 
peaks. This measure of spacial periodicity is called the wavelength .X, and for either 

4 Note that we have not, at this point, made the assumption that the conductor is a good one, i.e., 
that u > Wf. 
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wave it is given by 

(D.20) 

Ifwe now examine the complex magnetic field solution (D.10) for H(:c, t), we find it to 
be of the same form as the complex electric field solution (D.9) for E(:c, t). Accordingly, 
we can also view equation (D.10) as a complex-number representation of a superposition 
of two plane waves: one traveling in the -:c-direction and the other traveling in the +x
direction. Furthermore, the frequency, wavelength and skin depth associated with the 
two waves of equation (D.10) are all the same as those associated with (D.9). In fact, the 
only distinction whatever between the two solutions for the telegraph equations is that 
one describes the magnetic field and the other the electric field. Note that although the 
actual amplitudes of both the electric and magnetic waves are attenuated as the waves 
travel, we henceforth refer to the complex vectors E1 and E2 as the complex amplitudes 
of the electric fields, and H 1 and H 2 as the complex amplitudes of the magnetic fields. 

Even though equations (D.1) and (D.2) are derived directly from Maxwell's equations 
(Appendices A and B), it is important to realize that, bec~use they were arrived at by 
taking derivatives, they do not contain all of the information that Maxwell's equations 
contain. For this reason, we must now reconsider Maxwell's equations themselves in 
order to further explain the nature of our assumed traveling wave solutions (D.9) and 
(D.10). Let us first concentrate our attention on the electric and magnetic waves that 
are traveling in the +x-direction, and use Maxwell's equations to analyze each of these 
waves. Since there is no embedded free charge density inside an ideal conductor, we can 
use (A.8) to write Gauss's law (A.3) in complex form as 

(D.21) 

If we expand the complex amplitude E2 in terms of its three spacial components as 

(D.22) 

where (.E2)i represents the ith spacial component of the complex vector, then we can 
apply (D.21) to the second term on the right-hand side of equation (D.9) to yield 

(D.23) 

or 
(D.24) 

Similarly, we can apply the relationship (A.6) to write (A.4) in complex form as 

(D.25) 

and apply this to the second term on the right-hand side of equation (D.10) to yield 

(D.26) 
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Equations (D.24) and (D.26) suggest that x-components of both the complex electric and 
the complex magnetic fields are zero. Since a complex quantity is zero only if both its 
real and its imaginary parts are zero, we can also conclude from (D.24) and (D.26) that 
the actual electric and magnetic fields have no component along the x-axis. Note that 
this is the axis along which both the electric and magnetic waves are traveling. Waves 
such as these, which exert influences or cause disturbances in directions perpendicular 
to their direction of travel, are called transverse. · 

Using Faraday's law (A.1), we can relate the complex electric and magnetic ampli
tudes of the waves traveling in the +x-direction by 

(D.27) 

Since the vector resulting from a cross-product is in a direction perpendicular to the plane 
containing the two crossed vectors, equation (D.27) implies that the complex magnetic 
field is perpendicular to the plane defined by the complex electric field and the x-axis 
(axis of travel). Consequently, it can be shown that the actual magnetic field must also 
be perpendicular to the plane containing the electric field and the x-axis, and because of 
equations (D.24) and (D.26) we know that the electric field, the magnetic field and the 
x-axis must all be mutually perpendicular. Therefore, since these magnetic and electric 
plane waves are so closely related, they are considered collectively to comprise a single 
transverse electromagnetic (TEM) wave, propagating (traveling) in the +x-direction. 

In the same way, we can apply Maxwell's equations to the first term on the right
hand side of equation (D.9) and the corresponding term of equation(D.10) to yield the 
relations 

(D.28) 

and 

(D.29) 

Once again, equations (D.28) and (D.29) imply that these electric and magnetic traveling 
waves comprise a single TEM wave, only now it is traveling in the -x-direction. We 
can therefore view our assumed solutions (D.9) and (D.10) to the telegraph equations as 
complex vector representation of the superposition of two TEM waves, one traveling in 
the +x- and the other in the -x-direction. In actuality, of course, it is the real parts of 
equations (D.9) and (D.10) that define these TEM waves. 

It is important to note that, although we can conclude from (D.27) and (D.29) that 
the electric and magnetic fields within a TEM wave must both lie in the yz-plane and 
be mutually perpendicular, we still do not specifically know the direction of either field. 
This information concerning the orientation of the fields is called the polarization of the 
TEM wave, and it is, in general, determined by some additional physical constraint. In 
the case of an infinite solenoid, the polarization of the wave is determined solely by the 
orientation of the solenoid itself. This is the case because, as argued in Section 3.1.1, 
the magnetic field within an infinite solenoid is uniformly directed along its axis. If we 
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define our coordinate system as in Fig. 3.15, then we know that the magnetic field within 
an infinite solenoid is along the z-axis. Consequently, we can see from (D.27) that the 
electric field must be directed along the y-axis, and because of Ohm's law (A.7), the 
current density as well. Note that it is the TEM-wave property of mutual orthogonality 
of the electric field, magnetic field and direction of travel that forms a physical basis for 
the assumptions in Section 4.1.2 that the magnetic field is along the z-axis, the current 
density along the y-axis, and that both the magnetic field intensity and current density 
are functions of x only. We assume this same orientation or polarization of the TEM 
wave throughout the remainder of this appendix. _ 

Before considering the behavior of the superposed TEM waves represented by (D.9) 
and (D.10), let us first concentrate on a single TEM wave traveling in the +x-direction 
with no obstructions. If the wave is traveling in free space, then <T = 0, and from equation 
(D.11) we see that 

(D.30) 

and .lds purely imaginary. Based upon equations (D.19) and (D.20), therefore, we expect 
that the wave will propagate unattenuated in the +x-direction with a wavelength given 
by 

.X = 21r 
w~ 

{D.31) 

In its upper left-hand corner, Fig. D.1 shows in an inset drawing the orientation of the 
x-, y- and z-axes. Note that the z-axis points upward on the page and lies in the plane 
of the page, while the x-axis comes out of the page to the left and the y-axis out of the 
page to the right. Figure D.l also shows a representation of a 7.5 MHz TEM wave at a 
single instant in time, plotted in the same coordinate system as shown in the inset. The 
wave is traveling in free space in the +x-direction with a source of some kind at x = 0, 
which establishes a polarization of the TEM wave such that the magnetic field H(x) 
is directed along on the vertical (z) axis, and electric field E(x) is directed along the 
horizontal (y) axis. The source at the origin is maintaining a magnetic field that varies 
sinusoidally with an amplitude of 2 A-t/m, and the associated electric field satisfies 
equation (D.27). As time advances, the wave peaks shown move to the left on the page 
in the +x-direction, and new peaks periodically appear at x = 0. Each peak is traveling 
at the speed of light5, since the wave is in free space where the magnetic permeability 
and the electric permittivity are equal to their free space values. Note that Fig. D.l does 
not show the entire plane wave, but only the part that is traveling along our particular 
x-axis. In reality, the wave completely fills all space where x ~ 0, but regardless of which 
point we choose on the yz-plane as the origin of the x-axis, the variation of the fields 
along this axis will be identical to Fig. D.l. 

Figure D.1 also reveals that the magnetic and electric fields are oscillating in phase. 
We can understand this by examining the phase relationship between the sinusoidally 

5 The speed of a. wa.ve is in genera.I observed to be v = J>.. For a.n electromagnetic wa.ve it is a.lso given 
by v =~.which, in free spa.ce, reduces to v = -b ~ 3.0 x 108 m/s. 

~ v~~ 
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Transverse Electromagnetic Wave in Free Space 
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Figure D.l: Representation of a 7.5 MHz transverse electromagnetic wave 
traveling through free space in the +x-direction. 
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varying magnetic and electric fields suggested by (D.27). By comparing (D.13) and 
(D.15) we see that the phase angle associated with the polar form of the complex ampli
tude is also the initial phase angle of the actual, sinusoidal electric-field traveling wave. 
Thus, if we rewrite (D.27) in polar form as 

- ·e lkleiBk - ·e IH2le3 H2 = ·(900) (ax X IE2le3 E 2) 
e3 wµ 

(D.32) 

we can equate the exponentials on the left-hand and right-hand sides to obtain 

(D.33) 

Since k is purely imaginary, its phase angle is also 90°, and so 

(D.34) 

and the fields oscillate in phase. 
ff we now consider the TEM wave to be traveling in a slightly conductive medium 

(u > 0), then the electric field will begin to interact with this medium to produce currents 
according to Ohm's law. This results in a transfer of energy from the fields to the 
medium, which is why the amplitudes of the fields attenuate as the wave travels. Figure 
D.2 shows a representation of a TEM wave traveling through a very weak conductor. The 
source at the origin is again establishing a magnetic field that varies sinusoidally with an 
amplitude of 2 A-t/m, and the magnetic permeability and electric permittivity are again 
taken to be their free space values. Note that both the electric and the magnetic fields 
are ~tenuated as the wave propagates, and the wavelength is slightly reduced from its 
free space value since the wave has been slowed down by its interaction with the medium. 
Note also that there is a slight phase difference between the magnetic and electric fields 
since the wave number k of equation (D.27) now has a non-zero real part. This can be 
seen more clearly in the expanded-view inset of Fig. D.2, which shows on a magnified 
scale the electric and magnetic fields in the vicinity of the zero-crossing near x = 10 m. 

Figure 0.3 shows a representation of a TEM wave propagating through a medium of 
five times greater conductivity than that of Fig. D.2. Now the wave is able to complete 
little more that a single cycle before being almost completely attenuated, the wavelength 
is greatly reduced, and the electric field is noticeably leading the magnetic field in phase. 
Finally, if we consider a medium of very high conductivity, we can make the assumption 
that u ~ W€ in equation (D.11) and obtain (as in Section 4.1.2) 

k = ✓ 2 
(l+j) . wµ0u 

(D.35) 

so that the skin depth 8 is now given by 

(D.36) 
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Transverse Electromagnetic Wave in Weak Conductor 
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Figure D.2: Representation of a 7.5 MHz transverse electromagnetic wave 
traveling through a very weak conductor in the +x-direction. 
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Transverse Electromagnetic Wave in Fair Conductor 
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Figure D.3: Representation of a 7.5 MHz transverse electromagnetic wave · 
traveling through a fair conductor in the +x-direction. 
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Since the real and imaginary parts of k are now equal, we can use equations (D.19) and 
(D.20) to write 

(D.37) 

which means that the skin depth is about one sixth of the wavelength, or that the TEM 
wave can only travel a fraction of a wavelength before being almost completely absorbed. 
In fact, after traveling through a distance equal to one half of a wavelength, the amplitude 
of the TEM wave in the conductor is reduced to only about 4% of its initial value. Also, 
equation (D.35) implies that 

(D.38) 

so that by equation (D.33) we have 

(D.39) 

and the electric field leads the magnetic field by 45°. Figure D.4 shows a TEM wave 
traveling in copper, which has a conductivity that is about 1011 times greater than that 
of the medium of Fig. D.3, while the magnetic permeability and electric permittivity 
are again taken as their free space values. Note that the scale on the x-axis of Fig. D.4 
is four orders of magnitude smaller than that of the previous figures. This new scale 
is necessary because the TEM wave is now attenuated heavily in a very short distance, 
indicating that the high conductivity of copper causes a very rapid transfer of energy 
from the fields to the medium at this frequency. As predicted by equation (D.37), both 
the electric and magnetic fields are attenuated down to a negligible value well before the 
completion of a single spacial cycle. In fact, in this regime, it is difficult to discern the 
sinusoidal spacial behavior of the TEM wave at all, since it is masked by the exponential 
damping. As a result, we cannot see from this figure whether or not the temporal phases 
of the electric and magnetic sinusoidal fields really obey (D .39), since we are only looking 
at a snapshot in time. In Section 4.3.2, however, we introduce a more appropriate way 
to represent such field solutions in a good conductor that will allow us to verify equation 
(D.39). 

Virtually all of the properties of TEM wave traveling in the +x-direction are shared 
with a with a TEM wave traveling in the -x-direction. Regardless of the direction 
of propagation, a TEM wave responds in precisely the same manner to an increase in 
conductivity or frequency. In fact, the only distinguishing characteristic of a TEM wave 
traveling in the -x-direction is that the electric field oscillates 180° out of phase with 
respect to a wave traveling in the +x-direction, assuming that the magnetic fields are 
oscillating in phase. This is clear from equation (D.29), which suggests that 

(D.40) 

so that for a good conductor the phases of the magnetic and electric fields are related by 

(D.41) 
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Transverse Electromagnetic Wave in Copper 

Freq 
Wavelnth 
Cond 
Skin Dpth 

X 

[ X 10-4 m] 

= 7.5 MHz 
= 1. 584xl0- 4 m 
= -5. 315xl07 I ohm-m 
= o. 2521xlo- 4 m 

H(x) [A-t/m] 
2 

I 
I 
I 
I 

1 

---

t-1 
I 
I 
I 
I 

+ 
I 
I 
I 
I 

-!--2 

-----

1. 5 

E(x) 

[ xlo- 3 V / m] 

Figure D.4: Representation of a 7.5 MHz transverse electromagnetic wave 
traveling through copper in the +x-direction. 
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and the electric field leads the magnetic field in phase by 225°. This may seem to be 
a fairly insignificant result; however, as we shall see in Section 4.3.2, it is this property 
of TEM waves that is solely responsible for the circulating currents that are commonly 
known as eddy currents. 

Having now investigated the behavior of a TEM wave traveling in both the +x- and 
the -x-directions, we are now in a position to analyze the field solutions in an infinite 
current sheet, which is, of course, our objective. According to the model introduced in 
Section 3.3.1, the values of the magnetic field at x = 0 and x = hcu can be arbitrarily 
specified and are assumed to be in sinusoidal steady state. It is evident from Figure D.4, 
however, that we cannot arbitrarily specify the magnetic field of a single TEM wave at 
two different points. Consider, for example, that in Fig. D.4 we choose hcu = 0.5 X 10-4 

m and we wish to arbitrarily specify the magnitude of magnetic field at this point to 
be zero. Clearly, we cannot, unless we also allow the magnetic field to change from its 
present value at every other point. Therefore, in order to be able to arbitrarily specify 
the magnetic field at two points on the interval between x = 0 and x = hcu, it is necessary 
to introduce a second TEM wave, traveling in the opposite direction and originating at 
x = hcu• Using a superposition of these two waves, it is now easy to adjust the initial 
value of each wave so as to satisfy any arbitrarily chosen boundary conditions at both 
x = 0 and x = hcu• Note that if the height of the copper is much greater than the skin 
depth there is no significant interaction between the two waves. Figure D.5 shows such 
a situation where the magnetic field at x = 0 has been chosen to have an amplitude of 2 
A-t/m with a phase angle of 0°, and the magnetic field at x = hcu = 3 X 10-4 m has been 
chosen to have an amplitude of 2 A-t/m with a phase angle of 0°. In this case, since there 
is no interaction, these boundary values are also the initial values of the magnetic fields 
associated with the TEM waves traveling in the +x- and the -x-direction respectively. 
In Fig. D.6, however, there is significant interaction between the two TEM waves. In this 
example, we have chosen the same magnetic field boundary conditions as in Fig. D.5, but 
now we have decreased the copper height to hcu = 1 X 10-4 m. As a result, each TEM 
wave does not die out completely before reaching the other side. Therefore, the initial 
value of each TEM wave constitutes only a portion of the total magnetic field boundary 
condition at x = 0 or x = hcu• Moreover, in such cases where there is interaction between 
the two waves, the relative phase between the total electric field and the total magnetic 
field across the layer will not in general obey either of the relationships given for single 
TEM waves in equations (D.39) and (D.41). In fact, when the copper height is very 
small with respect to the wavelength, the two TEM waves combine in such a way that 
both the total electric and the total magnetic fields are constant across the height of the 
copper. Therefore, since the current density J is of the same form as the electric field 
at every point (J = uE), this is why we do not see any circulating currents when the 
frequency is low with respect to the-conductor height. 
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Two TEM Waves in Copper with no Significant Interaction 

Freq = 
Wavelnth = 
Cond = 
Skin Dpth = 
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' ' ' ' 
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' ' ' ' " .... ,, 
' ' ' 
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Figure D.5: Superposition of two 7.5 MHz transverse electromagnetic waves 
traveling in copper where there is no interaction. One wave has its source 
at x = 0 and travels in the +x-direction and the other wave Ras its source 
at x = hcu and travels in the -x-direction. 
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Freq 

Two TEM Waves in Copper with Significant Interaction 

' ' ' = 7.5 MHz ' ' ' ' 
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5.315xl07 /ohm-m ' ' = ' ' 
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Figure D.6: Superposition of two 7.5 MHz transverse electromagnetic waves 
traveling through copper where there is significant interaction. 
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Appendix E 

Expansion of Jy(x) Jy(x) 

We have from (4.51), 

For any complex variables &'., &'.1, and &'.2, the following identities hold 

(&'.1 + .&'.2)* 

(&'.1 - .&:2)* 

(.&:1 .&'.2)* 

(::r 
&'.+.&:* 

.&:-.&:* 

For the cosh and the sinh functions, we have 

(cash&:)* 

(sinh &:)* 

* + * .&'.1 .&'.2 

* * .&'.1 - .&'.2 

* * .&'.1 &'.2 
z* -1 
z* -2 
2 Re(&:) 

2j Irnfa) 

coshfa*) 

sinhfa*) 

Therefore, the complex conjugate of .lu(X) can be expressed as 

(-l)e k* H;(x = hcu) [ * ( · ) *( )] 
sinhk*hcu coshk X - a - J/3 coshk hcu - X 

as hcu and X are both real parameters. 

E-1 

(E.2) 
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Multiplying (E.1) and (E.2) gives the product Jy(X)JZ(X): 

() *() ((-l)ekHz(X=hcu))[ ( . ] J...11 X .LyX = ~khcu coshkX - a+ J/3) coshk(hcu - X) 

where 

YO 

Yl 

Y2 

Ys 

Y4 

( (-lYk* l[;(X = hcu)) [ h * ( "/3) h *(h )] 
X sinhk* hcu cos k X - a - J cos k cu - X 

lkl 2 IHz(X = hcu)l 2 
{ } 

Y1 + Y2 + Y3 + Y4 
Yo 

sinh khcu sinh k* hcu 

coshkX coshk*X 

-a [ cosh k( hcu - X) cosh k* X + cash kX cosh k* ( hcu - X)] 

j/3 [coshkX coshk*(hcu - X) - coshk(hcu - X) coshk*x] 

(E.3) 

(E.4) 

(E.5) 

(E.6) 

(E.7) 

(E.8) 

At this point we introduce the following identities involving the trigonometric and hy
perbolic functions: 

cosh &:1 cosh &:2 
cosh(&:1 + &:2) + cosh(&:1 - &:2) - 2 

sinh &:1 sinh &:2 
cosh(&:1 + &:2) - cosh(&:1 - &:2) 

2 

cosh (&:1 + &:2) cosh &:1 cosh &:2 + sinh &:1 sinh ~2 

cosh(j&:) cos(&:) 

sinh(j&:) jsin(~) 

cos(-~) - cos(~) 

sin(-~) - sin(~) 

cosh(-&:) cosh(&:) 

sinh(-&:) - sinh(~) 
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Using (4.6), we also write 

khcu ( ¾ + j ¾) hcu = A + j A 

/s_X - (}+i})x=w+jw 
fs_(hcu - X) (¾ + j¾) (hcu - X) = V + jv 

E-3 

(E.9) 

(E.10) 

(E.11) 

where A = hcu/8, w = X/8, and v = (hcu - X)/8 are real numbers that have been 
introduced in Section 4.5.2. The variable A is defined as the ratio of the height of a layer 
to the skin depth; w and v are variables used here merely to simplify the writing of the 
expressions which follow. Using these definitions, we can start expanding the terms in 
(E.3) to (E.8). For example, 

Yo sinh khcu sinh /s_* hcu 

= 

cosh[A + jA + (A -jA)] - cosh[A + jA - (A - jA)] 
2 

cosh(2A) - cosh(j2A) 
2 

cash 2d - cos 2d 
2 

Yl cosh/s_X cosh/s_*X 

Y2 . 

cash 2w + cos 2w 
2 

(a2 + 132
) [cosh/s_(hcu - X) cosh/s_*(hcu - x)] 

(a2 + 132) [cash 2v: cos 2v] 

(E.12) 

(E.13) 

(E.14) 

Using the identities of cash(~*) = (cash~)* and g_1 g_2 = (~i ~2)*, the term y3 can be 
regrouped step by step as follows: 

y3 = -a [ cash ls_( hcu - X) cash ls_* X + cash /s_X cash ls_* ( hcu - X)] 

-a [ cash ls_( hcu - X) cash /s_* X + cash /s_X ( cash ls_( hcu - X)) *] 

-a [ cash ls_( hcu - X) cash /s_* X + ( ( cash /s_X) * cash ls_( hcu - X)) *] 

-a [ cash ls_( hcu - X) cash /s_* X + ( cash ls_* X cash ls_( hcu - X)) *] (E.15) 
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Recognizing that (coshk*X coshk(hcu - x)}"' 1s the complex conjugate of 

coshk(hcu - X) coshk*X, and applying the identity of.&:+.&:"'= 2 Re(.&:) to (E.15) gives 

y3 = -2a Re[coshk(hcu - X) cosh.k_*x] (E.16) 

To find the product of cash k( hcu - X) cosh k* X, we make use of the facts that k( hcu - X) = 
v+jv = (d-w)+j(d-w) and k*X = w-jw and the expansion formula for cosh.&'.1 cosh.&:2 

to write 

coshk(hcu - X) coshk*X 

cosh([d - w + j(d - w)] + (w - jw)) 

2 

cosh([d - w + j(d - w)] - (w - jw)) 
+ 2 

_ cosh(d+j(d-2w)) cosh(d-2w+jd) 
- 2 + 2 (E.17) 

Using the identities cosh(.&:1 + .&'.2) = cosh.&'.1 cosh.&:2 + sinh.&:1 sinh.&:2 , cosh(j.&:) = cos.&:, 
and sinh(j_~) = jsin.&:, (E.17) can be regrouped as 

coshk(hcu - X) coshk*X 

cash d cosh(j(d - 2w)) + sinh d sinh(j(d - 2w)) 
2 

cosh(d - 2w) cosh(jd)) + sinh(d - 2w) sinh(jd)) 
+ 2 

coshd cos(d - 2w) + jsinhd sin(d - 2w) 
2 

cosh(d-2w) cosd+;"sinh(d-2w) sind 
+ 2 (E.18) 

Since d and w are real numbers, the functional values of the trigonometric and hyperbolic 
functions in (E.18), with d and d - 2w as arguments, are all real numbers. As a result, 
the real and imaginary parts of coshk(hcu - X) cosh_k*X are easily identified as 
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Re[coshk(hcu - X) coshk*X] 
coshd cos(d - 2w) +cosh(d - 2w) cosd 

2 

1m[coshk(hcu - X) cosh_k*x] 

Substituting (E.19) into (E.16) gives 

sinhd sin(d- 2w) +sinh(d- 2w) sind 

2 

y3 = -a[coshd cos(d- 2w) +cosh(d - 2w) cosd] 

A very similar derivation follows for the term y4 : 

y4 = i.B[coshkX coshk*(hcu - X) - coshk(hcu - X) coshk*x] 

j,8 [coshkX ( coshk(hcu - X)) * - coshk(hcu - X) coshk*x] 

j,8 [ ( (coshkX)* coshk(hcu - X)) * - coshk(hcu - X) coshk*x] 

j ,8 [ ( cosh k* X cosh k( hcu - X) r -cosh k( hcu - X) cosh k* X] 

(E.19) 

(E.20) 

(E.21) 

(E.22) 

Recognizing that ( cosh k* X cosh k( hcu - X)) • is the complex conjugate of 
coshk(hcu - X) coshk*X and substituting the identity of~• - ~ = -2jlm(~) into (E.22) 
gives 

Y4 = 2,8 Im[coshk(hcu - X) coshk*x] 

Substituting (E.20) into (E.23) yields 

y4 = .B[sinhd sin(d- 2w) +sinh(d - 2w) sind] 

Substituting (E.12), (E.13), (E.14), (E.21), and (E.24) into (E.3) gives 

(E.23) 

(E.24) 
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2 jkl 2 IJfz(X = hcu)l 2 

(cosh 2A - cos 2A) 

{ 
(cosh 2w + cos 2w) 

X 2 

(a2 + ,82)(cosh 2v + cos 2v) 
+ 2 

- a ( cosh A cos( A - 2w) + cosh( A - 2w) cos A) 

+ .8(sinhAsin(A- 2w) + ~inh(A - 2w)sinA) } 

lkl 2 IJiz{X = hcu)l 2 

(cosh2A - cos2A) 

x { (cosh2w + cos 2w) 

+ (a2 + ,82)(cosh 2v + cos 2v) 

- 2a( coshA cos(A - 2w) + cosh(A - 2w) cos A) 

+ 2,a(sinh Asin(A - 2w) + sinh(A - 2w) sin A) } 

which is the final result for the expansion of .l11 (X)J;(x) as shown in (4.100). 

(E.25) 
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Expansion of H z(x) H1(x) 

We have from (4.50), 

Hz(X) = Ji;i~:h~:u) [sinhk_X +(a+ j,B) sinhk(hcu - X)] (F.1) 

Applying the same arguments in deriving the expression for ~;(x) in (E.2), the complex 
conjugate of Hz (X) is derived and the result is presented here: 

H!(X) = ~f~:;:::)[sinhk*X+(a-j,B)sinhk*(hcu-x)] (F.2) 

Multiplying (F .1) and (F .2) gives the product H z(X)H!(X): 

where 

Hz(X)H;(x) = (li;i~:h~:u)) [sinhk.X+(a+j,B)sinhk(hcu -x)] 

Yo 

Ys 

Y6 

Y1 

X (~f~:;:c:)) [sinhk*X+(a-j/3)sinhk*(hcu-x)] 

IHz(X = hcu)l
2 

{ } 
Ys+Y6+Y1+Ys 

Yo 

sinhkhcu sinhk_* hcu 

sinh kX sinh k* X 

(a2 + /32)sinhk(hcu - X) sinhk_*(hcu - X) 

a [ sinh k( hcu - X) sinh k* X + sinh kX sinh k* ( hcu - X)] 

F-1 

(F.3) 

(F.4) 

(F.5) 

(F.6) 

(F.7) 
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Ys = i.8[sinhk(hcu - X) sinh_k*X - sinhkX sinhk*(hcu - x)] (F.8) 

For convenience, we repeat here the trigonometric and hyperbolic identities introduced 
in Appendix E: 

We also write 

cash ~1 cash ~2 

sinh ~1 sinh ~2 

cosh(~1 + ~2) -

cosh(i~) 

sinh(i~) 

cos(-~) -

sin(-~) 

cash(-~) 

sinh(-~) -

kX 

k(hcu -x) 

cosh(~1 + ~2) + cosh(~1 - ~ 2) 

2 

cosh(~1 + ~2) - cosh(~1 - ~ 2) 

2 

cash ~1 cash ~2 + sinh ~1 sinh ~2 

cos(~) 

isin(~) 

cos(~) 

- sin(~) 

cash(~) 

-sinh(~) 

(F.9) 

(F .10) 

(F.11) 

where .6. = hcu/8, w = X/8, and v = (hcu - X)/8 are real numbers that have been 
introduced in Section 4.5.2. The variable .6. is defined as the ratio of the height of a layer 
to the skin depth; w and v are variables used here merely to simplify the writing of the 
expressions which follow. Using these definitions, we can start expanding the terms in 
(F .3) to (F .8). 

Yo 

= 

sinh khcu sinh k * hcu 
cosh[.6. + i.6. + (.6. - i.6.)] - cosh[.6. + i.6. - (.6. - i.6.)] 

2 
cosh(2.6.) - cosh(i2.6.) 

2 
cash 2.6. - cos 2.6. 

2 
(F.12) 
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Ys sinhkX sinhk*X 

Y6 

cosh 2w - cos 2w 
2 

(a2 + (32
) (sinhk(hcu - X) sinhk*(hcu - x)] 

( 02 + (32) [cosh 2v; cos 2v] 

F-3 

(F .13) 

(F.14) 

In expanding the term y7, we recognize that the product sinh kX sinh k* ( hcu - X) in 
(F.7) is the complex conjugate of the product sinhk(hcu - X) sinhk*X. A very similar 
argument is presented in Appendix E for the expansion of the term y3. Therefore, 

Y7 = a(sinhk(hcu - X) sinhk*X + sinhkX sinhk*(hcu - x)] 

2a Re[sinhk(hcu - X) sinhk*x] (F .15) 

To find the product of sinh k( hcu - X) sinh k*X, we make use of the facts that k( hcu - X) = 
v+ jv = ( D.-w )+ j ( D.-w) and k* X = w-jw and the expansion formula for sinh ~1 sinh ~2 

to write 

sinh k( hcu - X) sinh k* X 

cosh([D. - w + j(D. - w)] + (w - jw)) 

2 

cosh([D. - w + j(D. - w)] - (w - jw)) 

2 

cosh( D. + j(D. - 2w)) 

2 
(F.16) 

Using the identities cosh(~1 + ~2) = cosh~1 cosh~2 + sinh~1 sinh~2, cosh(j~) = cos~, 
and sinh(j~) = j sin~, (F .16) can be regrouped as 
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sinhk(heu - X) sinhk*X 

cash Ll cosh(j(Ll - 2w)) + sinh Ll sinh(j(Ll - 2w)) 
2 

cosh(Ll - 2w) cosh(jll)) + sinh(Ll - 2w) sinh(jll)) 
2 

cash Ll cos( Ll - 2w) + j sinh Ll sin( Ll - 2w) 
2 

cash( Ll - 2w) cos Ll + j sinh( Ll - 2w) sin Ll 
2 

Appendix F 

(F.17) 

Since Ll and w are real numbers, the functional values of the trigonometric and hyperbolic 
functions in (F .17), with Ll and Ll - 2w as arguments, are all real numbers. Thus, 

[ ] 
coshll cos(Ll-2w)-cosh(Ll-2w) cosll 

Re sinhk(hcu - X) sinhk*X = 
2 

Im[sinhk(hcu - X) sinhk*x] 

Substituting (F .18) into (F .15) gives 

-sinhll sin(Ll-2w)- sinh(Ll -2w) sinll 
2 

YT = a[coshll cos(Ll - 2w) - cosh(Ll - 2w) cosll] 

(F.18) 

(F.19) 

(F.20) 

Recognizing that the product sinhkX sinhk*(hcu - X) in (F.8) is the complex conjugate 
of the product sinhk(heu - X) sinhk*X, the term YB is expanded as 

Ys = j,B[sinhk(hcu - X) sinhk*X - sinhkX sinhk*(hcu - x)] 

-2,B Im[sinhk(hcu - X) sinhk*x] 

Substituting (F .19) into (F .21) yields 

YB = -,B[sinhll sin(Ll - 2w) - sinh(Ll - 2w) sinll] 

(F.21) 

· (F.22) 
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Substituting (F.12), (F.13), (F.14), (F.20), and (F.22) into (F.3) gives 

Hz(X)H;(x) = 2 lliz(X = hcu)l
2 

cash 2.6. - cos 2.6. 

{ 
(cosh2w - cos 2w) 

X . 2 

(a2 + ,82)(cosh2v - cos2v) 
+ 2 

+ a [ cash .6. cos( .6. - 2w) - cash( .6. - 2w) cos .6.] 

- ,a[sinh.6.sin(.6.- 2w) -sinh(.6.- 2w)sin.6.] } 

llfz(X = hcu)l 2 

cash 2.6. - cos 2.6. 

x { (cash 2w - cos 2w) 

+ (a2 + ,82)(cosh2v - cos2v) 

+ 2a [ cash .6. cos( .6. - 2w) - cash( .6. - 2w) cos .6.] 

- 2,B[sinh.6.sin(.6.- 2w)- sinh(.6. - 2w)sin.6.] } 

which is the final result for the expansion of Hz(X)H;(x) as shown in (4.118). 

F-5 

(F.23) 
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Appendix G 

Integration of Jy(x) Jy(x) with 
resp~ct to X 

Before the integration of J 11 (X).li/(X) with respect to Xis shown, several mathematical 
formulae associated with hyperbolic functions are listed: 

cosh(-X) 

sinh(-X) 

/ cash( aX) dX 

/ sinh( aX) dX 

cosh(X) 

-sinh(X) 
sinh(aX) 

a 
cosh(aX) 

a 

Equation (4.101), which defines the product of .l
11
(X)J11 *(X), is repeated here for conve

nience. 

lkl 2 JHz(X = hcu)l 2 

.ly(X)i;(X) = (cash 2d - cos 2d) 

x { [cash (
2
:) + cos (

2
:)] 

+ ( ci +ff) [ cash ( 2d -
2
;) + cos ( 2d -

2
:)] 

- 2a[coshdcos ( d -
2
;) + cash ( d -

2
;) cosd] 

+ 2,a[sinhdsin ( d -
2
;) + sinh ( d -

2
:) sind] } 

(G.1) 

G-1 
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By factoring constants which do not vary with respect to X outside the integration 
operation, the integration can be split into four parts as: 

J (x)J*(x) dX = - -z - cu Ji+ I2 + [3 + [4 lahcu. lkl 2 IH (X - h )1 2 
{ } 

o =-y 11 (cosh 2A - cos 2A) 
(G.2) 

where 

11 - fohcu. [cosh (2:) + cos (
2
:)] dX (G.3) 

I2 (a2 + {32
) fohcu. [cash ( 2A -

2
:) + cos ( 2A -

2
:)] dX (G.4) 

[3 -2a fohcu. [coshAcos ( A - 2;) + ·cosh ( A -
2
:) cosA] dX (G.5) 

[4 2/3 fohcu. [sinh A sin ( A -
2
:) + sinh ( A -

2
:) sin A] dX (G.6) 

The four integrals are now evaluated in sequence. First, 

(G.7) 

Substituting the definition of A = hcu./ 8 into the above equation gives 

(G.8) 
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The integral 12 is evaluated next. The reader is again reminded that d is defined as the 
ratio of hcu to 8. 

12 (a2 + p2) fohcu [cosh ( 2d -
2
:) + cos ( 2d -

2
:)] dX 

-8(a2 + p2) r ( 2X) ( 2X)] hcu 
2 

lsinh 2d - 8 + sin 2d - 8 
0 

-8(a
2 + p2

) [. h ( 2hcu) . ( 2hcu) . h ( ) . ( A)] 
2 

sm 2d - -
8

- + sm 2d - -
8

- - sm 2d - sm 2L.l. 

-8(a2 + p2) [ l · 
2 

0 + 0 - sinh (2d) - sin (2d) 

The evaluation of l3 proceeds in a similar manner: 

[ ( 
2X) ( 2X) l hcu Sa coshdsin_ d - 8 + sinh d - 8 cosd 

0 

[ 
. ( 2hcu) . ( 2hcu) Sa cosh dsm d - -

8
- + smh d - -

8
- cos d 

- coshdsind - sinhdcosd] 

fo [ cosh <l. sin( -<l.) + sinh( -<l.) cos <l. - cosh <l. sin <l. - sinh <l. cos .i.] 

-Sa [2 coshd sind + 2sinhd cosd] 

-m 4a [ cash <l. sin a+ sinh <l. cos .i.] 

(G.9) 

-m 4a [ sinh <l. cos <l. + cash <l. sin .i.] (G.10) 
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The evaluation of [4 gives 

[4 = 2j3 fohcu [sinh ~ sin ( ~ - 2
:) + sinh ( ~ - 2

;) sin~] dX 

- 6/3 [sinh ,l cos ( <l-
2
:) - cash ( ,l -

2
:) sin ,l i:= 

f . ( 2hcu) ( 2hcu) . 8J3 l5mh ~ cos ~ - -
8

- - cash ~ - -
8
- sm ~ 

- sinh~c~s~ +cosh~sin~] 

8J3 [sinh ~ cos(-~) - cash(-~) sin~ - sinh~ cos~+ cosh~sin~] 

- 8J3 [sinh ~cos~ - cash~ sin~ - sinh ~cos~+ cash~ sin~] 

0 (G.11) 

Substituting (G.8), (G.9), (G.10), and (G.11) into (G.2) yields the final result: 

f□hcu ( ) *( ) lkl 2 IJiz(X = hcu)l 2 
8 

0 
J 11 X 1..y X dX = 

2 (cosh2~ - cos2~) 

x { ( 1 + a 2 + J32
) ( sinh 2~ + sin 2~) 

- 4a(sinh~cos~+cosh~sin~)} (G.12) 



Appendix H 

Integration of Hz(x) H!(x) with 
respect to X 

Equation (4.119), which defines the product of Hz(X)Hz *(X), is repeated here for con
venience. 

Therefore, 

where 

llL(X = hcu)l 2 

(cash 2~ - cos 2~) 

x { [cash (
2
:) _ cos (

2
:)] 

+ ( a 2 + p 2
) [cash (2~ -

2
:) - cos (2~ -

2
:)] 

+ 2a[cosh~cos ( ~ - 2
;) - cosh ( ~ - 2

;) cos~] 

- 2p[sinh~sin ( ~ - 2
;) - sinh ( ~ - 2

;) sin~] } 

IHz(X = hcu)i2 { } /5 + 16 + h + Is 
(cosh2~ - cos2~) 

(H.l) 

(H.2) 

J5 _ fohcu [cash (
2
:) - cos (

2
:)] dX (H.3) 

H-1 



H-2 Duke University Appendix H 

Is 

2a fohcu [ cosh Ll cos ( Ll -
2
;) - cosh ( Ll -

2
;) c~s Ll] dX 

-2/3 fohcu [sinh Ll sin ( Ll -
2
;) - sinh ( Ll -

2
;) sin Ll] dX 

The four integrals are now evaluated in sequence. 

Evaluating Is gives 

Is = fohcu [cosh (
2
:) - cos (

2
:)] dX 

~ [•inh (2:) - sin (2:) t 
8 [ . (2hcu) . (2hcu) l 
2 smh -

8
- - sm -

8
- - 0 + O 

8 [ . h (2hcu) . (2hcu)] -sm -- -sm --
2 8 8 

~ [sinh 2.!l - sin 2.!l] 

Is = (ci + ,82
) fohcu [cosh ( 2.!l -

2
:) - cos ( 2.!l -

2
:)] dX 

-8(a
2 + /32

) [ ( 2X) ( 2X)] hcu 
2 

sinh 2.!l - 8 - sin 2.!l - 8 
0 

(H.5) 

(H.6) 

(H.7) 

-8(a
2 + /32

) [ • ( 2hcu) . ( 2hcu) . ) . )] 
2 

smh 2.!l - -
8

- - sm 2.!l - -
8

- - smh (2.!l + sm (2.!l 

-8(a2 + 132) [ l 
2 

0 - 0 - sinh (2.!l) + sin (2.!l) 

8(0:2 + 132) 
2 

( sinh 2.!l - sin 2.!l) (H.8) 
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The evaluation of Ir yields: 

Ir = 2a hhcu [cosh .6. cos ( .6. -
2
:) - cosh ( .6. -

2
:) cos .6.] dX 

, [ 2X 2X l hcu 
-6a cosh .6. sin ( .6. - 8 ) - sinh ( .6. - 8 ) cos .6. 

0 

[ 
. ( 2hcu) . ( 2hcu) - -8a cosh .6. sm .6. - -

6
- - smh .6. - -

6
- cos .6. 

- cosh .6. sin .6. + sinh .6. cos .6. l 
-fo [ cosh Ll. sin( - Ll.) - sinh( - Ll.) cos Ll. - cosh Ll. sin Ll. + sinh Ll. cos Ll. l 

- -6a [ 2 sinh Ll. cos Ll. - 2 cosh Ll. sin Ll. l 
- ( ~) 4a [ sinh .6. cos .6. - cosh .6. sin .6. l (H.9) 

The evaluation of ls yields 

ls = -2(3 fohcu [sinh.6.sin ( .6. -
2
:) - sinh ( .6. -

2
:) sin.6.] dX 

f . ( 2hcu) ( 2hcu) . -6(3 lsmh .6. cos .6. - -
6

- + cosh .6. - -
6

- sm .6. 

- sinh .6. cos .6. - cosh .6. sin .6. l 
-6 ,8 [sinh Ll. cos( - Ll.) + cosh ( -Ll.) sin Ll. - sinh Ll. cos Ll. - cosh Ll. sin Ll. l 
6 fl [ sinh Ll. cos Ll. + cosh Ll. sin Ll. - sinh Ll. cos Ll. - cosh Ll. sin Ll. l 
0 (H.10) 
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Substituting (H.7), (H.8), (H.9), and (H.10) into (H.2) gives the desired result of 

la hcu ( ) *( ) lliz(X = hcu)l 2 
8 

0 
Hz X Hz X dX = 

2 (cosh26 - cos 26) 

x { (1 + a 2 + ,82
) (sinh26- sin26) 

- 4a(sinh6cos6 - cosh6sin6)} (H.11) 



Appendix I 

Description of Pot-Core 
Transformer Tested in 
Section 6.3 

In this appendix, we describe the pot-core transformer that is shown in Fig. 6.10 and 
tested in Section 6.3. Figures 6.11 and 6.12 show comparisons between the measured and 
modeled short-circuit resistances and inductances for this core. The values of L./ LEASE, 

H z-N and a for the pot-core transformer under the six short-circuit tests are identical 
to those given for the EE-core transformer in Table 6.5. .AJJ much as possible, data 
are presented in this appendix in the same format as in Tables 6.1 and 6.2. Since the 
transformer of interest is wound on a pot core, certain parameters such as Xbob and Ybob 

have no meaning and have not been included in Tables I.I and I.2. 
The eight-layer four-winding transformer1 was wound on a Ferroxcube 4229F1D bob

bin which was placed inside a Ferroxcube 4229PL00-3C8 ferrite pot core. Each winding 
has twenty turns and is composed of two layers of ten turns each. Each layer contains 
twenty insulated conductors since two electrically paralleled wires were wound together. 
Five-mil paper insulation was put between windings to produce a winding cross-section 
similar to Fig. 6.1. 

1Duke's internal reference number for this core is pcOl b05 

I-1 
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Table 1.1: Initial Collection of Mechanical and Electrical Parameters 

II PMameter I Value 

II 
Nt. 10 (all layers) 
n_. 2 ( all layers) 

Ne 20 ( all layers) 
AWG 20 ( all layers) 

ht 5 mil = 1.27 x 10-4 m 

bwin 2.07 X 10-i m 

Pcu,20°c 1.7241 X 10-8 fl-m 

Kr 3.93 X 10-11 !1-m/C0 

T 60 °C 

Table 1.2: Calculated Mechanical Parameters 

II Symbol I Value 

II 
dcu 8.12 X 10 .,. m ( all layers) 
do 8.84 X 10-4 m ( all byers) 

hcu 7.20 X 10- 4 ID ( all layers) 
bcu 7.20 X 10 ,. m ( all conductors) 

11 0.696 ( all layers) 

II Symbol I Layer Number 
1 2 3 4 I 5 6 7 8 

II lT 1 6.46x10-2 I 7.01 x 10-~ I 1.1ox10-~ I 8.25 x 10-~ I 8.92x 10- 2 I 9.42 x 10-~ 1.01 X 10 I.OGX 10 I : 

Gap Number 
1 2 3 I 4 I 5 6 7 

g 1.6 e-4 3.7 e-4 3.5 e-4 0.7 e-4 3.1 e-4 
lg 6.74xl0-" 7.36 X 10- 8.59 X 10- 9.17xl0- 9.76X 10-
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CALCULATING THE SHORT~CIRCUIT IMPEDANCES OF A 
MULTIWINDING TRANSFORMER FROM ITS GEOMETRY 
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Department of Electrical Engineering 
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Abstract 

From a simplified field analysis, expressions are derived 
to calculate the set of frequency-dependent leakage 
inductances of a multiwinding-transformer from the 
layout and dimensions of its windings. Experimental 
data are provided that illustrate the accuracy and the 
limitations of such leakage-inductance calculations, as 
well as the accuracy of ac-winding-resistance calcula
tions carried out using a similar, previously-published 
method. 

1 INTRODUCTION 

As switching frequencies rise, the design of trans
formers for multiple-output de-to-de power convert
ers becomes increasingly difficult because frequency
dependent stray effects can no longer be neglected. In 
the windings of a transformer, skin and proximity ef
fects induce eddy currents in the conductors, increas
ing copper losses, and by opposing the penetration 
of magnetic flux into the conductors, decreasing leak
age inductances. Often stray effects can be incorpo
rated in transformer equivalent-circuit models for use 
in SPICE-like circuit simulations; the difficulty is that 
usually there is no easy way to determine a priori what 
parameter values to use in such circuit models to accu
rately predict the behavior of a proposed transformer 
design. 

In the equivalent circuits proposed in the literature 
for low-frequency modeling of a multiwinding trans
former under sinusoidal excitation,. the parameters 
needed to characterize the model can be obtained from 
the measured low-frequency short-circuit inductances 
or impedances of the transformer [1,2J. With respect 
to the high-frequency operation of transformers, much 
of the work that has appeared in the last two decades 

This work was supported in part by a research contract with 
Digital Equipment Corporation, Maynard, MA. 

tNow with Digital Equipment Corporation, Northboro, MA. 
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has focused on calculating the ac-winding-resistance 
component of short-circuit impedance. A review of a 
portion of this literature is given in [3]. Although re
ceiving considerably less attention and often ignored, 
the leakage-inductance component can be just as im
portant, significantly affecting circuit operation at high 
frequencies. In certain types of circuits such as quasi
resonant switching converters, the leakage inductance 
of the transformer is a desirable and important element 
in the circuit. However, in other applications, the in
ductances in the windings cause undesirable compo
nent stresses and cross-regulation effects which influ
ence the steady-state output voltages that appear on 
unregulated outputs. 

Dowell presents a method in [4J for calculating 
the frequency dependence of winding resistance and 
leakage inductance. His method is useful for two
winding transformers, but since it cannot accommo
date the open-circuited windings present during the 
short-circuit-impedance tests described in Section 4, 
it is unsuitable for transformers having multiple sec
ondary windings. In this paper, a method that ap
pears in [SJ is presented for calculating the leakage in
ductances between pairs of windings in a multiwinding 
transformer, a method which is based on the layer-by
layer approach used in [6] for calculating winding losses 
at high frequencies. The present approach is more 
versatile than Dowell's, accounting for the magnetic
energy-storage variation and the losses due to eddy 
currents that are induced in open-circuited windings 
at high frequencies. 

Considered in this paper are transformers having un
gapped pot cores and EE cores of high-permeability 
material, and windings of round, strip, and foil con
ductors arranged in concentric cylindrical layers. The 
magnetizing current of the core and the capacitances 
of the windings are neglected. 

This paper builds on a method that has evolved 
over the past two decades for successfully predicting 
the ac winding losses of a multilayer transformer from 
the magnetic-field-intensity distribution in its winding 
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Figure 1: Steps in transforming a layer of round 
wires on a bobbin into an equivalent foil layer for 
analysis. The round wires are replaced by square 
conductors of the same cross-sectional area, with 
hcu = bcu, which are brought together into a sin
gle foil layer, then "stretched" to fill the entire 
window breadth bwin without changing the height 
of the layer hcu or the position of the layer in the 
:z:-direction. Layers of strip and foil conductors are 
transformed similarly. 

space [6-8]. Extending that pattern, an expression is 
derived by which the leakage inductances of a trans
former may be calculated from its dimensions and the 
layout of its windings. Such leakage-inductance cal
culations, coupled with the earlier winding-resistance 
calculations, let us predict the short-circuit impedan
ces which can be used to model a transformer. These 
predictions are shown to be in close agreement with 
laboratory measurements. 

2 APPROXIMATIONS 

Both the resistive and inductive components of short
circuit impedances can be calculated from the magnetic
field distribution inside the winding space of a trans
former. To permit solving for this field distribution as 
a one-dimensional problem, the magnetic field in the 
winding space is assumed to be parallel to the center 
leg of the transformer. In practice, a high-permeability 
pot core surrounding the winding structure produces 
such a field pattern, and experimental results indicate 
that the assumption of parallel field lines is a valid one 
for a high-permeability EE core as well. 

The actual winding layers of a transformer are com
monly approximated by equivalent-foil windings which 
span the entire breadth of the core window as illus
trated in Fig. 1 [4,6J. To compensate for the increase in 
the cross-sectional area of the conducting layer which 
occurs in the last step of the transformation, an effec
tive conductivity rJUcu is used in the field equations 

c__ 

breadth 

'kT 
height 

X 

Figure 2: A cylindrical winding layer is approx
imated by an infinite current sheet, which is as

sumed mathematically to extend to infinity in the 
y (depth) and z (breadth) directions to obtain the 
field solution. The height of the sheet is hcu in the 
:z:-direction. 

for the layer. The effective conductivity is lower than. 
the conductivity Ucu of the conductors by a factor of 
the layer porosity r,, defined as rJ = Ncbcu/bwin, where 
Ne is the number of conductor cross sections appearing 
in a cross-sectional view of the winding layer. It is rea
sonable to expect that for r, less than some limit, the 
equivalent-foil-layer approximation is no longer valid_ 
However, fairly good test results have been obtained 
for r, as low as approximately 0.5. 

For the cylindrical equivalent-foil winding layer pic
tured in Fig. 2, a field solution is most accurately 
derived in cylindrical coordinates, but cumbersome 
Bessel functions appear in the solution [7J. Althouglt 
it is possible to replace them by approximations (SL 
Bessel functions can be avoided altogether by using 
a flat current sheet, shown enlarged in Fig. 2, to ap
proximate the layer. The error is small as long as the 
thickness hcu of the layer is small with respect to its 
radius of curvature [7J. It is this infinite-current-sheet 
field solution which is derived in the next section. 

3 FIELD SOLUTION 

In this section, it is assumed that a transformer
winding layer may be modeled as a finite portion 
an infinite current sheet. The complete boundazn 
value solution for the magnetic energy stored in suclj 
a current sheet for any frequency is then derived fI'OIIII 
Maxwell's equations, and the corresponding equatHll!II 
for power dissipation previously derived by Vandelail 
and Ziogas is repeated for use in Section 4. In th.ii 
section, both results are applied to the winding la 
of a transformer to calculate its short-circuit imped 
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ces, each consisting of an ac winding resistance and a 
leakage reactance. SI units are used in all equations. 

3.1 Diffusion Equation for H 

An equation that describes the magnetic-field-intensity 
distribution across an infinite current sheet is first de
rived from Maxwell's equations, then solved in Section 
3.2. Beginning with the differential form of Ampere's 
law, 

ao 
VxH=J+at (1) 

the curl of both sides is taken and the vector identity 
V x V x H = V(V • H) - V 2 H is used, along with 
the constitutive relations B = µH, J = (710-.,u)E, and 
D = eE, Gauss's law for magnetism V • B = O, and 
Faraday's law V x E = -aB / at, to obtain the follow
ing result. 

2 aH a2 H 
V H = µ(110-cu) at + µe at2 (2) 

The effective conductivity 'IO'cu is used in these equa
tions for the reason given in Section 2. 

If the magnetic field is varying sinusoidally in time, 
then the time-varying vector quantity H can be repre
sented in the frequency domain by a vector phasor H, 
where the magnitude IHI of the vector phasor is chosen 
to be the rms value of the field intensity. 

H(x, y, z, t) = v'2Re [H(x, y, z)e;"'t] (3) 

The vector phasor H represents three phasors, one for 
each spatial component of the vector H. 

H(x,y,z) =H,,,a.x+H11 a.y+H.,a.z (4) 

Substituting (3) into (2), and using the knowledge 
that, for sinusoidal waveforms, differentiating a vector 
with respect to time is equivalent to multiplying its 
vector phasor by jw, the standard three-dimensional 
diffusion equation results. 

where & is the complex wave number. 

(6) 

Note that underlines are used to denote all complex 
quantities, not just phasers. 

For windings made of a good conductor, the per
niittivity E and the permeability µ are given by their 
free-space values Eo = 8.854 x 10-9 F /m and µ0 = 
41!' X 10-7 H/m, respectively. For any frequency of in
terest in our analysis, ('IO'cu) > weo, which allows the 

following approximation to be made. 1 

(7) 

The close relationship between the complex wave 
number & and the skin depth 5, defined as 

5= (8) 

may be seen by substituting from Euler's identities 

•ff' 1 •ff' . r: J- - J- 1 
VJ = ( e 2 ) 2 = e 4 = v'2 ( 1 + j) (9) 

into (7) to give 

For the infinite-current-sheet problem under con
sideration, the spatial magnetic-field-intensity phasor 
H(x, y, z) is assumed to be a function of x only and 
to be directed in the z-direction. Using this fact, 
the three-dimensional diffusion equation (5) becomes 
the one-dimensional diffusion equation which must be 
solved. 

(11) 

3.2 Magnetic-Field-Intensity Profile 

The general solution of ( 11) has the form 

where H 1 and H 2 are arbitrary complex phasors which 
can be determined by applying the boundary condi
tions of magnetic field intensity at the surfaces of the 
current sheet, H.,(x=O) and Jl.,(x=hcu) shown in 
Fig. 2, which are obtained from the low-frequency field
intensity profile as described in Section 4. Using the 
definition sinh u = (e8 

- e-8 )/2, 

H,,(x) = . h~h [H.,(x=hcu)sinh&x 
sm - cu 

+ H..(x=O) sinh"f£(hcu - x)] (13) 

A thorough discussion and graphical display of the field 
variations represented by this equation are contained 
in [9J for a range of frequencies and various conditions 
of excitation. 
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1For copper with ac,. = 5.315 x 107 S/m at 60°C, this as
sumption is good for frequencies below approximately l x 1012 

hertz. 



To prevent zeroes from appearing in the denomina
tors of some of the equations to be derived, a new vari
able X (chi) is defined to take the place of x in (13) . 

x-{x if IH.,(x=hcu)l 2: IH.,(x=O)I (l4) 
- he.,- X if jH.,(x=hcu)I < IH.,(x=O)j 

This definition causes X = 0 always to be at the surface 
which has the smaller of the two boundary magnetic 
fields, and X = hcu always to be at the surface with the 
larger field. By defining the boundary-condition ratio 
as 

(15) 

an alternate form of (13) is obtained in terms of X. 

H .,(x) = H~(X=hcu) [sinh kX 
smhl£hcu -

+(a+ j/3) sinh&(hcu - x)] (16) 

H both boundary conditions of magnetic field inten
sity are equal to zero, ( 15) is undefined; but it is clear 
from (13) that the magnetic field intensity is zero ev
erywhere inside the current sheet, thus no magnetic 
energy is stored and no power is dissipated in the cur
rent sheet. 

3.3 Energy Storage 

The magnetic energy stored in any winding layer of a 
transformer can now be derived from the profile given 
by (16) for the magnetic field intensity inside an infinite 
current sheet. In general, the instantaneous energy 
stored in a magnetic field per unit volume at a point 
in space is 

(17) 

The time-average energy stored in the magnetic field 
in any layer of the transformer windings is obtained by 
integrating this expression over both the time for one 
cycle of the excitation current and the vo_lume occupied 
by the layer. The time integral is perfor~ed first in the 
following derivation. 

Because H(t) is assumed to have only a z-component 
inside the winding space of a transformer, (17) may be 
written in terms of the scalar quantity H.,(t). Substi
tuting a cosine expression for H.,(t), written in terms 
of the rms phasor magnitude I H., I and the phase angle 
6H, the time-average magnetic energy density (wm} in 
a layer is derived from the integral of (17) over the ex
citation period T, where angle brackets ( } denote the 
time average of the enclosed quantity. 

After performing the integration, 

(19) 

where jH.,12 can be expressed as the product of ta 
phasor H., and its complex conjugate n;. There
fore, the time-average magnetic energy density can be 
rewritten as 

{20) 

where, as a reminder, the dependence of H., on t.he 
height X is indicated. 

The time-average energy (Wm} stored in the mag
netic field in a conducting layer is then obtained by m
tegrating (20) over the volume occupied by the la~ 
To simplify the calculation, the winding layer is as

sumed to be flat instead of cylindrical, extending a dis
tance equal to the length-of-turn LT in the y-directioa.. 
Using bw,n and hcu from Fig. 1, 

(21) 

Because (wm} does not depend on y or z, the integrr 
tion with respect to those variables is a simple multi
plication. 

where (QH} is defined as the time-average magnetic 
energy stored in the infinite current sheet per square 
meter in the y-z plane. The integration in (22) is car
ried out in the Appendix with the following result. 

where 

= µoolH % (X = hcu) 12 

4 

x [(1 + a 2 + ,82 )Fs(.6.) - 4aF4(D..)] 

sinh 2.6. - sin 2.6. 
cosh 2.6. - cos 2.6. 

sinh fl. cos fl. - . cosh fl. sin fl. 
cosh 2.6. - cos 2.6. 

(23) 

(24) 

(25) 

The variable fl. = hcu/S is defined as the height of 
the winding layer hcu normalized to skin depth o, n 
and ,8 constitute the boundary-condition ratio in (15). 
and jH., (X = hcu) 12 is the square of the rms value of 
the larger of the magnetic field intensities at · the twu 
surfaces of the current sheet. 
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These equations make clear that the ac effects of 
interest are dependent not on conductor size alone, ha 
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on A, the conductor size relative to skin depth, which 
is a function of the excitation frequency as shown in 
(8) .. Furthermore, the limiting values of one and zero 
for F3 and F4 , respectively, may be used for large A to 
greatly simplify the calculation. This approximation 
introduces an error in (Qa) which is always less than 
10% for A ~ 3.1, and less than 5% for A ~ 3.4. 

3.4 Power Dissipation 

A simple expression may be derived for the profile 
l.

11 
( x) of the current-den~ity phasor across an infini~e 

current sheet in terms of the corresponding profile 
H ,.(x) of the magnetic-field-intensity phasor given by 
(13). Applying the constitutive relations J = (770-cu)E 
and D = eoE to (1), and converting to vector phasors 
for sinusoidal steady-state, 

where the good-conductor approximation used to ob
tain (7) is used here also. For the conditions illustrated 
in Fig. 2, where ! is in the y-direction only, H is in the 
z-direction only, and both are functions of only x, the 
following expression can be obtained from (26) by ex
panding the curl of H in rectangular coordinates and 
eliminating all the terms which are equal to zero. 

(27) 

From (27) and the fundamental expression for the 
power dissipated per unit volume at a point in space, 

(28) 

the power dissipation in a current sheet may be derived 
in a manner which parallels that in Section 3.3 for en
ergy storage. The resulting expression for power dissi
pation per squ~e meter of an infinite current sheet is 
given by Vandelac and Ziogas as (A-17) in [6J, repeated 
here in terms of our symbols. 

where 

= IH,.(x = hcu)l2 

(770-cu)S 
x [(1 + a2 + ,82)Fi(A) - 4aF2(A)] 

sinh 2A + sin 2A 
cosh 2A - cos 2A 

sinh A cos A + cosh A sin A 

cosh 2A - cos 2A 

(29) 

(30) 

(31) 

Once a.gain, the limiting values of one and zero for F1 

and F2 , respectively, may be used for large A to sim
plify the calculation. This approximation introduces 
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an error in (Q J) which is always less than 10% for 
A~ 2.2, and less than 5% for A~ 4.1. 

The equations presented up to this point are quite 
general, applicable to any possible combin·a.tion of sinu
soidal winding currents, with a minor exception: Equa
tions (23) and (29) cannot be applied to winding lay
ers in regions of zero magnetic field intensity, but as 
mentioned in Section 3.2, there is no magnetic energy 
stored and no power dissipated in such layers. Not 
all of the generality of these equations is needed at 
present, however. It is seen in the next secti.on that 
for the short-circuit tests considered in this paper, ,8 is 
always equal to zero . 

4 SHORT-CIRCUIT TESTS 

In a multiwinding transformer, there is one short
circuit or leakage impedance for each possible pair of 
windings, totaling K(K-1)/2 impedances for a trans
former having K windings. The short-circuit impe
dance 

(32) 

is the impedance seen at the terminals of winding j 
during short-circuit test (jlc), where winding j is excited 
at an angular frequency w, winding k is short-circuited, 
and the remaining windings are open-circuited. This 
impedance multiplied by the turn ratio squared would 
be seen at the terminals of winding k if winding k were 
excited and winding j were short-circuited. The core 
loss is assumed to be negligible, and the magnetizing 
inductance of the core is neglected because it is as
sumed to be much larger than the leakage inductance. 

Each different short-circuit test has a characteristic 
low-frequency magnetic-field-intensity profile as illus
trated in Fig. 3(c). A profile of this shape is produced 
_when the exciting current is of low enough frequency 
that the skin depth 5 is much larger than the height 
of the conductors hcu, and under the assumption that 
the high-permeability core requires equal and opposite 
ampere-turns in the open-circuited and short-circuited 
windings. If the rms current flowing at the termi
nals of the excited winding is held constant as the fre
quency is varied, the magnetic-field-intensity in any in
terlayer space remains uniform and has a constant rms 
value, although the profile changes shape inside the 
layers. Therefore, the low-frequency magnetic-field
intensity profile can be used to obtain the frequency
independent boundary conditions of magnetic field in
tensity in the spaces between winding layers that are 
needed to calculate the frequency-dependent magnetic 
energy storage and power dissipation in each layer of 
conducting material. 



(a) 

(b) 

loop 1 

loop 2 

(c) 

2 3 
winding 

4 ~numbers 
O or k) 

;nl DU 
• • • terminal 

3 31 4 4 1 ~numbers 

layer 
1 2 3 4 5 6 7 8 ~ numbers 

(n or p) 
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Figure 3: (a) Schematic diagram of short-circuit 
test (13) for a 4-winding 8-layer transformer. Dot
ted terminals of each winding are labeled with 
the corresponding winding number, and undot
ted terminals are labeled with the winding number 
primed. (b) Cross-section of the right half of the 
transformer, showing instantaneous current direc
tions in the equivalent-foil layers during one half 
of an excitation cycle. (c) Low-frequency mag
netic-field-intensity profile corresponding to the 
current directions shown in Part (b). 

To obtain expressions for the field-intensity phasor 
H,, in the interlayer spaces, which become the bound
ary conditions for the layer calculations, the integral 
form of Ampere's law is applied to loops such as those 
shown in Fig. 3(b). H Nt.p is the number of turns in 
the p th layer, and lt.p is the phasor of current flowing 
in each turn of the p th layer, the expression obtained 
for the field intensity in interlayer space S,. to the right 
of the n th layer in Fig. 3(b) is 

-1 n 

H,,,s,. = -b--- L Neplt.p . (33) 
w,n p=l 

Note that the magnetic field in the space to the inside 
of the innermost conducting layer, designated H,,,so, 
is equal to ·zero under the assumption of equal and 
opposite ampere-turns. H lsc is the phasor represent
ing the short-circuit current isc in Fig. 3(a), then lt.p 

can be expressed as Jsc for the layers in the excited 
winding j, and as (-N;/Nk)lsc for the layers in the 
short-circuited winding k, where and N; and N,. are 
the numbers of turns in the corresponding windings 
rather than the layers. Then (33) can be reduced to a. 

constant times lsc for each short-circuit test. There is 
no need to substitute a particular value for J sc in the 
intermediate results because lsc is ultimately canceled 
in (37) and (39) to obtain the equivalent short-circuit 
inductance and resistance, which are independent of 
the short-circuit current lsc· 

Once (33) has been used to obtain expressions fer 
the interlayer magnetic-field-intensity phasors H z.s. 
in terms of lsc, the total time-average energy stored 
in the winding space can be calculated, from which the 
short-circuit or leakage inductance L(ik) can then he 
obtained. The total time-average energy (WT) stored 
in the transformer winding structure is composed of 
two parts: the time-average energy (Wt) stored DI 
the winding layers, and the time-average energy (WsJ 
stored in the interlayer spaces. 

(M) 

(We) is calculated by summing the results of (22) fer 
all N winding layers, using ll z,S(n-1) and !I,,,s,. .ts 

the boundary conditions to evaluate ( Q H) for the n.dt. 

layer. 
N 

(Wt)= bwin L lTn (QH)n (35) 
n=l 

To calculate (W s), use is made of the fact that the 
magnetic field intensity is uniform in each interlays
space. The magnetic energy stored in one interlaytr 
space is thus the volume of the space times the energr 
density (wm) from (19), with the field intensity gives 
by (33). H s,. is the height of the n th interlayer space 
in the x-direction, and ls,. is the "length-of-turn" of 
the interlayer space in the y-direction, (W s) is the fol
lowing sum of energies for all (N-1) interlayer spaces. 

N-1 

(Ws) = bwin L ls,. s,. [~
0 

IH,,,s,.12
] (36) 

n=l 

After calculating the total time-average energr 
stored in the transformer winding space using (M). 
(35), and (36), the short-circuit or leakage inductance 
is obtained from 

2(WT) 
Lu1o) = -II 12 

-SC 

This is the equivalent lumped inductance which, if c.u:
rying the sinusoidal current represented by lsc, stons 
the same amount of magnetic energy as the winclmc 
space of the short-circuited transformer, averaged ovs-
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Figure 4: Winding diagrams for a 4-layer 2-wind
ing transformer with (a) windings composed of ad
jacent winding layers and (b) a split winding. 

one cycle of the current. The instantaneous magnetic 
energies typically are not equal, however. While the 
energy stored in the equivalent lumped inductance is 
zero at two instants in every cycle of the current, the 
instantaneous energy stored in the transformer wind
ing space at high frequencies is never zero because the 
magnetic field intensity is never simultaneously equal 
to zero at all points in the conducting layers. 

The resistance for a. particular short-circuit test is 
calculated in a manner similar to the above calcula
tion for inductance, except that only the winding lay
ers need to be considered because there are no losses in 
the interlayer spaces. The equation for the total time
average power dissipated in the windings is analogous 
to (35). 

N 

{PD)= bwin L lTn {QJ)n (38) 
n=l 

Then the short-circuit resistance is given by 

(39) 

5 VERIFICATION 

To compare calculated and measured values of short
circuit resistance and inductance over a frequency 
range of 100 Hz to 10 MHz, short-circuit tests were 
performed on several transformers using an HP 4192A 
impedance analyzer, with some of the results given in 

Core Type Magnetics, Inc. Ar, (mH lm Am 
Part Number @lO00t) (cm) (cm2 ) 

A pot P-44229-UG 2:::7500 6.81 2.66 
B EE F-44317-EC 5900 7.75 1.47 
C pot F-43428-UG 7550 5.89 1.60 

Table 1: Manufacturer's data for the magnetic 
cores used in the tests, including the inductance 
factor Ar,, the magnetic path length l,,., and the 
magnetic cross-section Am. 

Figs. 5, 7, and 8. The impedance analyzer results were 
confirmed by repeating some of the sa~e tests at higher 
current levels using an HP 3330B frequency synthesizer 
in conjunction with either a Crown DO-2000 2-kilowatt 
audio amplifier or an Amplifier Research 50A15 50-
watt RF amplifier as the excitation source, and a Tek
tronix 7854 oscilloscope to record waveforms and cal
culate impedances. Great care was taken to minimize 
the inductances of the transformer leads by keeping 
them as short as possible and minimizing loop areas. 
All of the transformers tested have cores of ungapped 
ferrite and windings of round copper wire. 

Winding diagrams for the first test transformers are 
shown in Fig. 4. They are similar to the diagram of 
Fig. 3(a), where the leftmost layer in the diagram cor
responds to the innermost layer of the actual trans
former, except that the excitation source and the short 
circuit are omitted from the figures in this section. The 
source and the short circuit are connected to different 
windings for the different short-circuit tests as indi
cated by the numbers representing the test; for exam
ple, for short-circuit test (12), the excitation source is 
connected between terminals 1 a.nd 1' and the short 
circuit is connected between terminals 2 and 2'. The 
core for each transformer is identified by a letter on the 
left side of the winding diagram, with descriptive in
formation provided in Table 1. The two different inter
connections of the winding layers shown in Fig. 4 were 
tested to compare split- and non-split-winding arrange
ments. This was made possible by providing external 
leads at both ends of each layer so that any desired 
interconnection of the layers could be made. The wire 
size "2#20" stands for two strands of AWG#20 wire 
wound side-by-side and connected in parallel. 
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For the winding configurations in Fig. 4, the pre
dicted and measured short-circuit inductances and re
sistances are plotted in Fig. 5. The curves of predicted 
data were calculated by computer using (37), (39), and 
the dimensions of the windings measured when each 
transformer was built. The offset between the pre
dicted and measured curves of inductance is thought 
to be caused principally by the lead inductances not in
cluded in the calculations, which cannot be avoided in 
the measurements. The leakage inductance data con-
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Figure 5: Predicted and measured short-circuit-test 
data for winding structures (a) and (b) in Fig. 4. 

firm that a split winding, represented by case (b), pro
duces a lower leakage inductance. 

The two curves of predicted resistance in Fig. 5 
match at low frequencies, but as expected, a split wind
ing produces lower losses at high frequencies. The mea
sured resistances agree well with the predicted curves, 
except for a rapid increase in the measured values as 
frequency rises above approximately 1 MHz. This ef
fect can be understood by considering a T-equivalent 
circuit of the transformer. 

. A multiwinding transformer under short-circuit-test 
conditions can be represented by the T-equivalent cir
cuit in Fig. 6, which shows only the two windings of the 
transformer that carry net currents. The short-circuit 
inductance L(;i.) is the sum of the two series leakage 
inductances L; and L~, and the short-circuit resistance 
R(;i.) is likewise the sum of the two series winding re
sistances R; and R:O. The values of those four circuit 
elements are clearly frequency-dependent, but because 
they change at a slower rate than the frequency, they 
may be considered to be fixed for the following argu
ment. 

The faster-than-expected rise in the measured resis
tance in Fig. 5 can be explained if a core-loss resistor 

IDEAL 

........ N 

C
,··-r·· j 
k j 

; 

Figure 6: T-equivalent circuit for a multiw:ind
ing transformer under short-circuit-test con~ 
tions. The stray elements associated with tlae 
short-circuited winding, labeled with primed sym
bols, have been referred to the excited winding.. 
The elements shown dashed are not incorporaied. 
in the fields analysis. 

RM and a winding capacitance C; are included in tlie 
equivalent circuit. The effect of neither core loss ~ 
winding capacitance is included in the field anal.,lil 
presented earlier. As the resonant frequency betweaa 
C; and (L; + L:O) is approached, a relatively high~ 
age is generated across RM. This represents signi&ca. 
core loss, which manifests itself in the test d~ as a. 
increase in the apparent winding resistance ~,"A=) Ulalt 
is not predicted by the field analysis. 

The same resonance also explains the corresp- I 
ing faster-than-expected decrease in the short-ciraii& 
inductance L(;k) as frequency rises. The "'measmal"' 
leakage inductance is actually an effective leakage • 
ductance, calculated from a measured reactance -sac 
(32). As frequency increases, the effective inductaaz 
L(jk) is reduced by the decreasing capacitive reactaaz 
(-1/wC;) that is not included in the field analysis.. 

Another test transformer is shown in Fig. 7. 
windings contain an electrostatic shield of copper -
which is treated as an open-circuited winding in die 
calculations since, at high frequencies, it Jjs,sjpnew 

power and affects leakage inductances just as any---
ing does. Data are shown for three of the six possilale 
short-circuit tests, with the same bobbin placed in boa 
a pot core and an EE core, The predicted curves ~ 
the same for the two cores, and the close matdt be
tween the two sets of measured data demon.straies taai: 
the field analysis, which assumes parallel flux Imes iii 
the winding space, is accurate for EE cores as wd ~ 
pot cores. For this winding structure, the resonaat ~ 
quency between the winding capacitance and the lml.
age inductances is seen in the resistance plots of Y1g.. -
to be approximately 2.5 MHz. 
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Another effect not accounted for in the a.aal.,sil 
causes the equivalent inductances in Fig. 7 to m.<n51111! 
dramatically as the frequency drops toward 100 m.. • 
IT the frequency sweep were continued in the d.ecn5&
ing direction, it is expected that a second inclllOZWP 
plateau would be seen at a level approximaielyeq.al 
the magnetizing inductance of the transforms-. wllida 
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Figure 7: (a) Winding diagram for a 6-layer 
4-winding transformer with an electrostatic shield . 

. . Predicted and measured data· for three of the six 
short-circuit tests with (b) a pot core and (c) an 
EE core. 

is neglected in the field analysis. The reason for the 
second plateau can also be explained by considering 
the T-equivalent circuit in Fig: 6. In this case, C; and 
RM may be ignored, but the magnetizing inductance 
LM must be included. 

As the excitation frequency decreases, the reactances 
of all the inductive elements in the T-equivalent circuit 
decrease proportionately, but ·the series combination of 
jwL',. and R',. approaches a lower bound which is equal 
to R',.. As frequency drops lower, the reactance wLM 
of the magnetizing inductance becomes much lower 
than R',.; therefore, the short-circuit inductance L(;1o) 

seen at the excited terminals reaches a maximum value 
which is the sum of LM and L;, with LM :> L;. 

Test results are given in Fig. 8 for one additional 
transformer, which has a mix of different wire sizes, an 
electrostatic shield, and a turn ratio greater than 3:1. 
Again, agreement is reasonably good between calcu
lated and measured values of short-circuit inductance 
and resistance. 

6 CONCLUSION 

By considering the set of short-circuit tests which can 
be performed on a multiwinding transformer, analyti
cal expressions are derived for the leakage inductances 
between all pairs of transformer windings, expressions 
which depend on only the winding geometry and the 
frequency of excitation. For each short-circuit test, 
a simplified field analysis gives the complete solution 
for the frequency-independent magnetic field intensity 
between winding layers, and the frequency-dependent 
distribution of magnetic field intensity within each 
layer. Then, for any frequency of interest, the mag
netic energy stored in each winding layer and inter
layer space is calculated, and the results are summed 
to give the total energy stored in the entire winding 
space of the transformer. Finally, the leakage induc-
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tance between the excited and short-circuited windings 
is derived from the total stored energy. 

The set of leakage inductances calculated in this 
manner is combined with the corresponding set of ac 
winding resistances, calculated by a method previously 
published in [6], to obtain the short-circuit winding 
impedances which _characterize th~ tr~nsf~rmer. Al
though only sinusoidal-current exc1tat1on 1S analyzed, 
it is common practice to apply such sinusoidal results 
to nonsinusoidal waveforms through Fourier analysis 

16,8,10,llj. 
Experimental data are provided which illustrate the 

generally good agreement obtained between calculated 
and measured values of short-circuit inductance and 
resistance. The data also reveal some limitations of 
the simplified field analysis in the form of differences 
between the measured and predicted values. Possible 
explanations are pffered for those differences in terms 
of various stray effects not included in the analysis. 

This paper presents a practical method for calculat
ing-prior to construction-the short-circuit impedan
ces of a multiwinding transformer at any number of 
frequencies. With this capability, it is possible to gain 
a better understanding of the high-frequency operation 
of multiwinding transformers, and it becomes reason
able to consider using more complicated transformer 
circuit models which account for the variation with fre
quency of winding resistance and leakage inductance. 
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Appendix: Derivation of Eq. (23) 

To derive (23), (16) is first substituted into (20). 

(wm) = ~o Hz(x) H;(x) = · (40) 

µo {H~(X=hcu) [sinh&x + (a+j,B)[sinh&(hcu- x)J 
2 smh&hcu 

x H?X=:hcu) [sinh&*x + (a-j,B)[sinh&*(hcu- x)J} 
smh_& hcu 

The multiplication is carried out, and the W-va.riables 
defined in the following paragraphs are used to repre
sent portions of the product. 

(wm) = ~o [!Hz(X;:hcu)l2 ('1!1 + '1!2 + W3 + W4)] 

(41) 
Equivalent expressions are derived below for each of 
the '11-variables by applying various hyperbolic and 
trigonometric identities. 

Using (10) and the definition ~ = hcu/6, 

To simplify expressions, a new variable u = x/o is 
defined such that 

&x = ¼(l+j)X = u+ju (43) 

Then 

'11 o = sinh &hcu sinh & • hcu 

'111 

'1!2 

= ½{cosh[(~ + j~) + (~ - i~)J 

= 
= 
= 

= 
= 

- cosh[(~ + j~) - (~ - j~)I} 

½(cosh 2~ - cos 2~) (44) 

sinh &x sinh &* X 

½(cosh 2u - cos 2u) (45) 

(a2 + ,82)[sinh&(hcu- X) sinh&*(hcu- x)j 

½(a2 + ,B2)[cosh(2~-2u) - cos(2~-2u)J 

(46) 

The key to the expansion of W3 and W4 below is 
to recognize that the two terms in each e~pression are 
complex conjugates of each other. 

W3 = a[sinh&(hcu-X)sinhf{"X 

+ sinh &* (hcu - X) sinh &xJ 

= 2a Re{sinh&(hcu- X) sinh&*x} 

= 2a Re{sinh[~ + j~ - (u + ju)] sinh(u - ju)} 

= 2a Re{½cosh[~ + j~ - (u +ju)+ (u - ju)J 

- ½ cosh[~ + j~ - (u + ju) - (u - ju)J} 

= a Re{cosh[~ + j(~ - 2u)] - cosh[(~ - 2u) + j~J} 

= a Re{ cosh ~ cos(~ - 2u) 

+ j sinh ~ sin(~ - 2u) (47) 

- [cosh(~ - 2u) cos~+ j sinh(~ - 2u) sin ~J} 

= a[cosh ~ cos(~ - 2u) - cosh(~ - 2u) cos~] (48) 

A similar derivation applies to '114, except that the 
imaginary part of the expression in curly braces in ( 4 7) 
is used instead of the real part. 

W4 = j,B[sinh&(hcu-X)sinh&*x 

- sinh&*(hcu- x) sinh&X] 

= -2,8 Im[sinh&(hcu- x) sinh&*xj 

= -,B[sinh ~sin(~ - 2u) 

- sinh(~ - 2u) sin ~J (49) 

Finally, (22) defines the quantity (QH) as the inte
gral of (41) with respect to X between the limits X=0 
and X = hcu• Using the equivalent expressions derived 
above for the '11-variables, and changing the integration 
variable to u, 

{hcu {~ 
(QH) = lo (wm) dX = lo (wm) 6 du 

= µojHz{X=hcu)l2 [~(sinh2~-sin2~) 
(cosh 2~ - cos 2~) 4 

o(a2 + ,B2) 
+ 

4 
(sinh 2~ - sin 2~) (50) 

- ~ 4a(sinh ~cos~ - cosh ~ sin~) + 0] 

where the result of integrating each term '111 through 
W 4 is shown separately. Regrouping terms, 

(QH) = µo5jH,.(X=hcu)l
2 

4 

x [(l + a 2 + ,82) ( sinh 2~ - sin 2~) 
cosh 2~ - cos 2~ 

_ 4a (sinh ~cos~ - cosh ~sin~)] (5l) 
cosh 2~ - cos 2~ 

which is essentially the same as (23). 
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_MAGNETIC-FIELD-INTENSITY AND CURRENT-DENSITY 
DISTRIBUTIONS IN TRANSFORMER WINDINGS 

Charles E. Hawkes Thomas G. Wilson Ronald C. Wong 

Department of Electrical Engineering 
Duke University, Durham, NC 27706 

Abstract 
The well-established solutions for the approximate 
magnetic-field-intensity and current-density distribu
tions within the windings of a transformer are ex
tensively illustrated as phasors in a series of three
dimensional graphs. The results greatly enhance the 
understanding of eddy currents and their impact on 
the energy-storage and power-dissipation characteris
tics of transformer windings. 

1 INTRODUCTION 
As the switching frequencies of multiple-output dc-to
dc coverters continue to rise, it becomes increasingly 
important that the parasitic effects of various- com
ponents are included as design parameters. In many 
cases, these "second ordern effects can have a signifi
cant inlluence on the efficiency, stability, or regulation 
of a converter. Such is the case with eddy currents 
in the windings of a transformer. This phenomenon 
causes the fields and currents within a conductor to 
be concentrated in regions near the surface, resulting 
in an increase in copper loss and a decrease in leakage 
inductance. 

The impact of eddy currents on the distribution of 
the magnetic field intensity and current density within 
the windings of a transformer has been discussed in 
the literature over the last two decades, and certain 
articles have been summarized in [lj. Consequently it 
is now possible to calculate the ac resistance and ~he 
leakage inductance based upon transformer geometry 
[2]. However, the ability merely to calculate parametric 
values for such stray effects is not sufficient for the 
design engineer who must also make intelligent and 
effective design choices. Rather, it is important for the 
engineer to have some fundamental understanding of 
eddy currents. 

Unfortunately, due to the complex nature of eddy 
currents, a thorough understanding normally requires 
a substantial investment of time in addition to a work-

This work was supported in part by a research contract with 
Digital Equipment Corporation, Maynard, MA. 

ing knowledge of electromagnetic field theory. This 
paper provides a format in which the crucial elements 
of eddy currents are extensively illustrated. The goal 
is to make the basic properties of eddy currents under
standable to the design engineer, without requiring a 
detailed knowledge of electromagnetic field theory. 

After making a series of simplifying assumptions 
concerning the structure of a transformer winding, it is 
possible to apply Maxwell's equations and arrive at so
lutions for the magnetic field intensity and current den
sity within the winding. These two quantities are the 
key elements in describing eddy currents, since they de
termine the energy-storage and power-dissipation char
acteristics of a transformer winding. Even though they 
are of primary importance, nevertheless, the magnetic
field-intensity and current-density distributions have 
received relatively little attention in terms of graphical 
illustrations. In fact, only one of the cited references 
provides plots of these solutions, namely, Reference 4 
of [1]. . 

This paper contributes to the existing literature by 
illustrating the phasor distributions of the magnetic 
field intensity and current density across the height of 
a winding in a series of isometric plots. In an exten
sive array of plots for both single-layer and multi-layer 
examples, this paper highlights some of the most im
portant properties of eddy currents. 

2 FIELD SOLUTIONS 
The validity of the transformer model used in this pa
per and the domain of its application are established 
elsewhere in the literature, and are therefore not ad
dressed here (see [2j and Reference 7 of [1]). The as
sumptions concerning transformer structure and their 
implications may be summarized as: 

1. The windings are closely wrapped and fill most of 
the window breadth. Implication: a layer of discrete 
conductors may be modeled as a foil conductor. 

2. The windings are enclosed by a pot core of infinite 
permeability. Implication: the foil windings may be 
modeled by infinite solenoids. 

1021 
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Expanded View of Conducting-Sheet 
Cylindrical Winding a Portion of the Approximation 

Layer Cylindrical Layer 
Figure 1: The approximation of a cylindrical wind
ing by an infinite conducting sheet. 

3. The diameter of each solenoid is large with respect 
to the conductor thickness. Implication: a small 
portion of each infinite solenoid may be treated as a 
portion of an infinite conducting sheet. 

Figure 1 illustrates assumption 3, which reduces the 
field problem of an infinite solenoid to the simpler prob
lem of an infinite conducting sheet. This conducting 
sheet, assumed to be made of copper, is shown in Fig. 2, 
together with a reference coordinate system. 

The solutions for the magnetic-field-intensity and 
current-density distributions within an infinite con
ducting sheet may now be obtained through an ap
plication of Maxwell's equations. The derivation of 
these distributions has been well-documented (see Ref
erences 1, 6 and 7 of [1]), and only the results are stated 
here. The three most significant assumptions used in 
the derivation are: 

4. Sinusoidal steady-state current excitation. 

5. The magnetic field intensity is directed along only 
the z-axis and the current density along only the 
y-axis. 

6. Both the magnetic field intensity and the current 
density are functions of x only. 

Because of these assumptions, we can write the mag
netic field intensity and the current density as the pha
sers H .. (x) and .ly(x), respectively, where the under
line signifies a complex number representing the pha
ser expression for a sinusoidal time function, the sub
script indicates the axial direction of the field, and the 
symbol (x) indicates that the phaser quantity varies 
with position x across the height hcu of the conduct
ing (copper) sheet. The solutions for the magnetic field 
intensity and current density at any point x across the 
conducting sheet may be written as 

H .. (x) = sinh~hcu [H..(hcu)sinhkx 

+ H"' (0) sinh k(hcu - x)] (1) 

and 

B~f ~plh ,~igbt 
X 

Figure 2: Model of infinite conducting sheet whiclt 
is assumed to extend to infinity in both the y 

(depth) and the z (breadth) directions. 

. ~t [n .. (hcu)coshkx 
sin _ cu 

- H .. (o) coshk(hcu - x)] 

where k is the complex wave number, hcu is the heigll! 
of the copper sheet as shown in Fig. 2, and JL(O) • 
H ..(hcu) are the phasers that represent the sinusoi~ 
varying magnetic fields at the two surfaces of the shel!I., 
The complex wave number k may by written as 

k rw;;:;;( ') 1( ') -= y~-2- l+J = 6 l+J 

where 6 = ✓2/wµ0a is defined as the skin deptb. 
a conductor. Equation (1) is identical to an equa.tiiiit 
that appears in [2], and (2) is similar to equation ~-
15) found in Reference 7 of [l]. Equations (1) and _ 
are the solutions which we investigate in this paps: 
Note that for a multi-layer transformer winding straet 
ture, we model each layer with an infinite conductiiil 
sheet, so that the magnetic-field-intensity and curre:i&, 
density distributions for each layer can be calcul ... 
using (1) and (2). This enables us to explore the :ia

ture of the magnetic-field-intensity and current-densill 
distributions for both single-layer and multi-layer Eli-

ample winding structures. 

3 SINGLE-LAYEREXAMPLI 
3.1 Plots of Phasor Magnitudes 
The four curves plotted in Fig. 3 show the ma.gaa 
tude of the phaser in (1) at each of four excitatiiil 
frequencies ranging from 1 kHz to 1 MHz. The ~ 
for these plots are generated from (1) for a partiaill 
example where H .. (o) = 1L0°, H .. (hcu) = 2L0°, 
hcu = 7 x 10-4 m. The complex wave number k -
appears in (1) is calculated using (3), where the pm
meability is taken as its free space value of 4,r x 10""1 
H/m. Note that because of the modeling proces,; 
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Figure 3: Magnitude of magnetic-field-intensity 
phasor H" ( x) in an infinite conducting sheet 
at 1 kHz, lOkHz, 100 kHz, and 1 MHz, with 
JL (0) = 1L0° and H ..(hcu) = 2L0°. 

assumption 1 in Section 2, the effective conductivity 
of the conducting sheet would generally be lower than 
the actual value for copper [2]. Since this correction 
does not significantly influence the shape of the H.,(x) 
and l..y ( x) distributions, however, we assume through
out this paper that the conductivity of the conducting 
sheet is the same as that of copper, which has a value 
of 5.315 x 107 S/m at 60°C. Figure 4 shows the cor
responding variation in the magnitude of the phasor 
current density at each of the four same frequencies. 
The data for the plots of Fig. 4 are generated from (2) 
using the same example values as in Fig. 3. 

The plots in Figs. 3 and 4 reveal the dramatic im
pact that excitation frequency can have on the distri
butions of the magnetic field:intensity and the current 
density. At 1 kHz, the magnitude of the magnetic field 
intensity varies approximately linearly from one layer 
surface to the other, and the magnitude of the cur
rent density is approximately constant at a value of 
1.43 kA/m2 over the 0.7 mm height of the winding. 
At higher frequencies, the magnitude of the magnetic 
field intensity decreases substantially away from the 
layer boundaries, but remains constant over frequency 
at the two surfaces of the layer-as it must since the 
boundary conditions of the problem do not change with 
frequency. Furthermore, the magnitude of the current 
density increases near the surfaces of the winding layer 
and drops to approximately zero in the interior regions. 

3.2 Plots of Phasors 
In interpreting Figs. 3 and 4, we must be careful to 
remember that they are only magnitude plots, and 
therefore do not contain any information on the phase 
angles that are associated with H..(x) and l..y(x). Al
though the magnitudes of the magnetic-field-intensity 
and current-density phasors are sufficient to determine 

I.J..,(xl I [x10 4A/m9 

5 

1 kHz 
4 10 kHz - - -

100 kHz -- --
1 MHz 

3 

2 

1 

2 4 6 
Layer Heigllt (x) [x10-4mJ 

Figure 4: Magnitude of current-density phaser 
.ly(x) in an infinite conducting sheet at excitation 
frequencies of 1 kHz, lOkHz, 100 kHz, and 1 MHz, 
with H ..(0) = lL0° and JL (hcu) = 2L0°. 

the energy-storage and power-dissipation characteris
tics of transformer windings, we can gain additional in
sight by including the phase information as well. One 
way to incorporate this information is to accompany 
each of the magnitude plots with a corresponding phase 
plot, or similarly, with plots of the corresponding real 
and imaginary parts of the phasors. Magnitude plots 
such as those in Figs. 3 and 4, together with plots of 
the corresponding real and imaginary parts of the pha
sors are found in Reference 4 of 11]. Although this ap
proach does illustrate all of the information contained 
in the phasors of (1) and (2), it is generally quite diffi
cult to gain physical insight into these solutions when 
the magnitude and phase information appears in two 
or more separate plots. To remedy this, we show the 
phasors of (1) and (2) at equally spaced intervals across 
the layer. Such a representation, however, needs to be 
three-dimensional, since each phasor has two compo
nents (real and imaginary) and the position of each 
phasor across the layer height requires a. third dimen
sion. This information can be represented in a three
dimensional, isometric drawing. 

For the same numerical example that is illustrated 
in Figs. 3 and 4, Fig. 5 contains plots ol the magnetic
field-intensity and current-density phasors, together 
with a table of selected data points. The upper set 
of three-dimensional axes in Fig. 5 shows the varia
tion of the magnetic-field-intensity phasors across the 
height of the layer calculated ming (1). The coordi
nate system represented by this set of axes is different 
from the one introduced in Y:ag. 2 in that the Re-axis 
and Im-axis in Fig. 5 defiDe, respectively, the real and 
imaginary parts of some phasor quantity, whereas the 
y-axis and z-axis in Fig. 2 deb.e, respectively, the ge
ometrical dimensions ol layer depth and layer breadth. 
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z H.(z) 

X 10-4 m A-t/m 

0 1.00 L0.00° 

1 1.14 L- 0.87° 
2 1.29 L-1.34° 
3 1.43 L-1.49° 
4 1.57 L- 1.40° 
5 1.71 L-1.10° 
6 1.86 L-0.63° 
7 2.00 L0.00° 

Real 
t-o. 75 

\ · I111ag · nary 

\ 1 

\ ,J;, [~O~m
2J 

T-2 Real 

L.(z) 

x104A/m2 

0.144Ll 72.18° 
0.143L173.96° 
0.143Ll 76.99° 
0.143L178.28° 
0.143L180.80° 
0.143L183.55° 
0.144L186.53° 
0.145L189.70° 

Figure 5: Magnetic-field-intensity phasor H z(x) 
and current-density phasor .ly ( x) at an excitation 
frequency of 1 kHz. 

However, the x-axis of Fig. 5 does correspond to the 
x-axis of Figure 2 in that they both define the geo
metrical dimension of layer height. The real part of 
Hz ( x) is plotted on the horizontal Re-axis, the imag
inary part is plotted on the vertical Im-axis, and the 
distance through the layer is plotted on the horizontal 
x-axis that is coming out of the page to the left. Note 
that the positive half of each axis is drawn with a solid 
line, while the negative half is drawn with a dashed 
line. The magnetic-field-intensity phasors are drawn 

. parallel to the Re versus Im-plane at evenly spaced 
points across the layer (x-axis). Each phasor has its 
tail on the x-axis, and its head at a point correspond
ing to the real and imaginary parts. Thus, a phasor · 
with zero phase angle (no imaginary part) would be 
shown parallel to the positive Re-axis, and a phasor 
with a 90° phase angle would be shown parallel to the 
positive Im-axis. The arrow head usually drawn at the 
head of a phasor is omitted here to avoid unnecessary 
cluttering of subsequent drawings. Instead, the heads 
of the phasors are all connected with a single, solid line 
to enhance the appearance of a surface. 

The plot and associated tabular values of Hz ( x) in 
Fig. 5 reveal that the magnitude of the magnetic field 
at 1 kHz varies relatively linearly across the layer. 
Also, since none of the phasors differ by more than 

J [x1c3A1nf) 
I 

X 

~~~•-1 

~ 
Figure 6: Actual current-density distribution a.t 

six different instants of wt spaced evenly througlt
out a half-cycle of oscillation at 1 kHz. 

2° from being parallel to the real axis, the magneia: 
field at every point across the layer must be oscilb&
ing very nearly in phase with the magnetic· field 
the surfaces. This simple, approximately linear dii,. 
tribution of magnetic-field-intensity phasors is similar 
to the result that is obtained by a direct appliclWIIIIII 
of Ampere's law to a conducting sheet that is cany, 
ing a uniform de current. The low-frequency case 
Fig. 5 is, of course, different from the de-case since UII! 
actual magnetic-field-intensity distribution that is rep
resented by Fig. 5 is varying sinusoidally in time a. 
every point across the height of the layer. 

The current-density phasors associated with thea= 
magnetic-field-intensity phasors have been calcula&el 
using (2) and the results are plotted on the lower set :.. 

axes in Fig. 5. Note that on this plot the scaling on ta 
real and imaginary axes has been changed from the lip

per plot to accommodate the current-density ph3.SOIJI 
while the scaling on the x-axis is the same as that -
the upper set of axes. The plot of the current-densilll 
phasors and the table of values in Fig. 5 reveal t 
the magnitude ·of .ly(x) remains essentially constall 
across the layer ·while the phase angle varies by a 
than ±10°. Therefore, we conclude that the ac~ 
current density is almost uniform across the layer 
varies sinusoidally with time. 

We can obtain additional insight into how the c-
rent density across the height of the layer varies will 
time if we imagine all of the phasors on the lower Si5 

of axes in Fig. 5 to be rotating at an angular frequ911 
2,r f in a counterclockwise direction around the x-uill 
Thus, the actual time-varying distribution of the a.
rent density would be proportional to the projections 
the phasors onto the plane of x versus Real. If the p-
sor magnitude is taken as the rms value of the ac~ 
sinusoid, the proportionality constant is Ji Figure ; 
which is a companion piece to Fig. 5, shows the a::
tual distribution of current density across the winCUIIIII 
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:z: H,.(:z:) .l.y(:z:) 

X 10-"m A-t/m x10"A/m2 

0 1.00 L0.00° 0.2171119.70° 
1 1.12 L-8.55° 0.1821127 .62° 
2 1.261-13.19° 0.1541141.74° 
3 1.401-14.74° 0.1411162.94° 
4 1.541-13.82° 0.1511186.99° 
5 1.681-10.86° 0.1851207.14° 
6 1.83 L-6.16° 0.2361221.84° 
1 2.00 L0.00° 0.2981232.84° 

Figure 7: H,.(x) and .ly(x} at 10 kHz. 

layer for an excitation frequency of 1 kHz at various 
points in time throughout one half-cycle. Each small 
plot is labeled with an angle measure, corresponding 
to the angular measure of time wt. The plots divide 
a half-cycle of oscillation into six equal intervals, and 
they are ordered in time from top to bottom down the 
left column, and then down the right. Note that the 
six current-density distributions evenly spaced for wt 
between 180° and 360°, which would complete the se
quence of one time cycle for Fig 6, are simply mirror 
images about the x versus Im plane of the six distri
butions shown in Fig 6. From Fig. 6, we can see that 
the current density appears nearly uniform across the 
layer at every instant of time throughout a single cy
cle. At wt = goo, the slight lack of uniformity man
ifests itself as a small negative current on the x = O 
side of the layer and a small positive current on the 
x = heu side of the layer. These oppositely flowing 
currents have, however, an instantaneous value of zero 
when averaged over the height of the layer. Since we 
take the real, or cosinusoidal part of the phasor .l (x) 
to be proportional to the actual, time-varying cur~ent 
density, we would expect that for a perfectly uniformly 
distributed current density there would be zero current 
at all points across the winding layer at times corre
sponding to wt = goo and wt = 270°. We conclude 
from Figs. 5 and 6 that skin effect does not have a sig
nificant influence on the distributions of magnetic field 

"I '- J [x 1a3 A/nf J 
. z- o• 

so• 

Figure 8: Actual current-density distribution over 
a half-cycle of oscillation at 10 kHz. 

intensity and current density when the excitation fre
quency is low or, more precisely, when the skin depth 
is large with respect to the layer height. 

~igu~e 7 contains plots of JL.(x) and J:i,(x) for an 
exc1tat1on frequency of 10 kHz and Fig. 8 shows the 
corresponding time variation of the actual current den
sity. The boundary conditions and layer height are 
the same as those used in Fig. 5. Throughout this 
section, we continue to use the example that is intro
duced in Section 3.1 and only the frequency is varied. 
The plot of the H ,.(x) phasors and the table of values 
in Fig. 7. show that the magnitudes of the phasors no 
longer vary linearly across the layer, and that the pha
sors near the center of the layer are lagging by almost 
15° behind those which have been established at the 
surfaces. Likewise, the curr!!nt-density phasors plotted 
on the lower set of axes in Fig. 7 are also beginning to 
show the influence of skin effect. With respect to the 
1 kHz example, there is now a noticeable increase in 
the magnitude of the current-density phasors near the 
surfaces of the layer, while the magnitude near the cen
ter has decreased slightly. More importantly, this plot 
reveals that there is now a substantial phase difference 
of 113° between the current-density phasors at x = O 
and those at x = heu• It appears as though the small 
ribbon of current density that is seen in the lower set of 
axes in Fig. 5 has been twisted and widened at the ends 
to give us the distribution of Fig. 7. As a result of this 
phase difference, there is now an appreciable portion 
of a cycle during which the actual current flows in op
posite directions on the two surfaces of the conducting 
sheet. This can be seen more clearly in Fig. 8. This 
figure reveals, for example, that during the interval 
60°::; wt ::; 150° the current near the surface at x = O 
is flowing in the -y-direction, while the current near 
the surface at x = hcu is flowing in the +y-direction. 

The H,. ( x) and _lg ( x) phasors for the case of 100-
kHz excitation frequency are plotted in Fig. 9, and 
the corresponding variation of actual current density 
is plotted in Fig. 10. Corresponding plots of H .. ( x) 
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:c H.(:c) 

X 10-°'m A-t/m 

0 1.00 L0.00° 
1 0.61L-35.90° 
2 0.52L-75.93° 
3 0.59L-93.22° 
4 0.68L-85.37° 
5 0.85 L-59.89° 
6 l.25L-28.72° 
7 2.00 L0.00° 

'(11aginary 

Real 
t-0.75 

\ I11ag·nary 

\ 1 

\ * [~O~m
2

] 

Real 
l.,{:c} 

xlO"A/m2 

0.755 L44.46° 
0.503 L25.76° 
0.286 L19.57° 
0.094 L63.88° 
0.240 L 158.21 ° 
0.521 L180.U 0 

0.868 L200.89° 
1.352 L224.83° 

Figure 9: H..(:z:) and L,(:z:) at 100 kHz. 

and .ly(:z:) are shown for 1 MHz in Figs. 11 and 12. 
Due to the increase in peak current density, each of 
the two high-frequency plots of the actual current den
sity in Figs. 10 and Fig. 12 is drawn to a different scale 
from the two low-frequency cases of Figs. 6 and 8. The 
variation of the magnetic-field-intensity phasors on the 
upper set of axes in Fig. 9 reveals the substantial im
pact of skin effect on this example layer at 100 kHz. 
The phasors near the center of the layer are now lag
ging in phase by more than 90° with respect to the 
phasors at the surfaces. There is also an attenuation 
in the magnitude of the H z(x) phasors away from the 
surfaces of about 40% with respect to the two lower fre
quency cases. Based upon electromagnetic wave the
ory, we know that this attenuation in the magnetic field 
is a result of energy being transferred (via the electric 
field) into the medium in the form of increased current 
density. Accordingly, we see that the current-density 
phasors of Fig. 9 are, in fact, substantially larger in 
magnitude near the surfaces of the layer, more than 
5 times that for 1 kHz at :z: = 0 and more than 9 times 
at :z: = hcu. Moreover, since the phase angles of the 
current-density phasors at :z: = 0 and at :z: = hcu differ 
by 180°, Fig. 9 suggests that at every instant of time 
throughout a cycle the actual current will be fl.owing in 
opposite directions at :z: = 0 and at :z: = hcu• This fact 
is evident from Fig. 10, which shows the time variation 
of the actual current-density distribution at 100 kHz. 

o• 

Figure 10: Actual current-density distribugga 
over a half-cycle at 100 kHz. 

Also, at wt = 60° there are three reversals of CllITI!!!a 

direction across the height of the layer. 
Figure 11 shows the distribution of Hz ( :z:) and - : 

at a 1-MHz excitation frequency, and Fig. 12 ~ _ 
the corresponding time variation of the actual C1IITI!S

density distribution at this frequency. On the upper 
set of axes in Fig. 11, we see that the magnitwde .=. 

the magnetic field intensity IH ..(:z:)I drops off rapii1t 
away from the surfaces of the layer, and the phase ~ 
gle of H ..(x) near the center of the layer is now~ 
as much as 270° behind the phase angle of JL(:c) "4 
the surfaces. Once again, this sharp attenuation ofca 
magnetic field intensity is associated with an in~ 
in surface current density. The plot of J.11 (:z:) in F"ig.. _ 
shows that the magnitude of the current-density pia-, 
sors has now dra.matically increased near the sorfxa 
by more than 14 times the 1 kHz value at :z: = 0 
more than 28 times at :z: = hcu• Near the center ofia 
layer, the magnitude of the current-density phasors · 
attenuated substantially to as low as 20% of the 1 ca 
value. 

Figure 12 reveals the complicated manner in wmdi 
the actual current-density distribution at 1 :Mm 
evolves in time. Note that the actual current-daaiillj 
distribution at each point in time is nearly odd sya
metric about the center of the layer and the imba.laa.ill 
i:n the symmetry corresponds to the net instant~ 
current fl.owing in the layer. It is important to re.a 
that, although the shapes ·of the J versus :z: plots 
Figs. 6, 8, 10 and 12 are dramatically different, the 
current, obtained by integrating the area under e.lldll 

curve, is identical for each frequency at correspond-al 
instants of time. This fact is not at all evident rr._ 
the plots of the magnitude of L,(:z:) in Fig. 4. It is c.Sli 

interesting to observe in Fig. 12 that at any instant:::_ 
time, as we move across the winding layer from x = O · 
:z: = hcu, we see that the current fl.ow undergoes sever.
changes in direction. This dispels the notion that skia
effect currents are simply surface currents that trawl 
in one direction on one side of the winding layer -
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Figure 11: H,.(x) and .ly(x) at 1 MHz. 

in the opposite direction on the other side of the wind
ing layer. At wt= 60°, for example, a current at each 
surface is flowing in one direction while just below this 
there is an even wider region with a current of larger 
instantaneous value flowing in the opposite direction. 

4 FOUR-LAYER EXAMPLES 
4.1 Plots of Phasor Magnitudes 
Figure 13 shows the cross-section of a four-layer infinite 
solenoid and its associated low-frequency magnetic
field-intensity diagram. Currents have been estab
lished in this solenoid so that ea.ch of the inner 
three layers carries a net current whose magnitude 
is 1 unit, while the outermost layer caries a net 
current whose magnitude is 3 units. This condi
tion closely models that of an ideal, four-layer trans
former, in which the inner three layers comprise one 
winding and the outermost layer comprises a second 
winding. Each layer in this structure has a height 
hcu of 0. 7 mm, the same as that of the individ
ual layer of Figs. 3 and 4, and each layer is sep
arated by an air gap of 0.2 mm. The magnetic
field-intensity boundary conditions corresponding to 
the low-frequency magnetic-field-intensity diagram of 
Fig. 13 are given for the four layers by H .. (0) = 0L0°, 
H,.(0.1 mm) = H,.(0.9 mm) = 1L0°, H,.(1.6 mm) = 
H,.(1.8 mm)= 2L0°, H,.(2.5 mm)= H,.(2.7 mm)= 
3L0°, and H ,.(3.6 mm) = 0L0°. Note that although 

Figure 12: Actual current-density distribution 
over a half-cycle at 1 MHz. 

Figure 13: Structure of a four-layer solenoid. The 
three inner layers are all of one winding and the 
outer layer is of a second winding. The outer layer 
carries a current equal to the sum of the currents 
in the other layers. 

the low-frequency magnetic-field-intensity diagram can 
be more completely represented in phasor form, the di
agram of Fig. 13 is applicable to the examples in this 
paper since all magnetic-field-intensity boundary con
ditions are chosen to be in phase (see 12] and Refer
ence 6 of Ill). It is important to realize that the four
layer infinite solenoid of Fig. 13 is not a transformer 
per se, since there is no magnetic core, and therefore 
places no constraints whatever on the magnetic fields 
in the air spaces. Thus, we intentionally choose the 
values of the magnetic fields in the air spaces so that 
the total number of ampere-.turns across the four layers 
1s zero. 

Figures 14 and 15 show plots of the magnitude of 
the magnetic-field-intensity and current-density distri
butions, respectively, across all layers of this four-layer 
solenoid, at the same four excitation frequencies. The 
solid-line in each figure shows the distribution for the 
lowest-frequency of excitation. In Fig. 14, this solid 
line corresponds closely to the low-frequency magnetic-
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Figure 14: Magnitude of magnetic-field-intensity 
phasor distribution for solenoid of Fig. 13. 
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Figure 15: Magnitude of current-density phasor 
distribution for solenoid of Fig. 13. 

field-intensity diagram of Fig. 13, while the solid line 
of Fig. 15 suggests that the current is almost uni
formly distributed across the height of each layer. At 
higher frequencies, however, the magnitude of the mag
netic field intensity and current density both decrease 
sharply near the center of each layer. Near the surfaces 
of each layer, the magnitude of the current density in
creases dramatically, while the magnitude of the mag
netic field intensity, which we assume to be a sinusoid 
of constant magnitude and phase, remains constant. 

4.2 Plots of Phasors 
Figure 16 shows the variation of the H., (x) and the 

;LY ( x) phasors across four layers at an excitation fre
quency of 1 kHz, together with an illustrative table of 
selected data points. The magnetic-field-intensity pha
sor distribution is plotted on the upper set of axes in 
Figure 16, while the current-density phasor distribu
tion is plotted on the lower set of axes. The upper plot 
and the data table in Fig. 16 reveal that, although there 
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Figure 16: Magnetic-field-intensity and curreut--
density phasor distributions across the four-layer 
solenoid of Fig. 13 at 1 kHz. 
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Figure 17: Magnetic-field-intensity and current
density phasor distributions across the four-layer 
solenoid of Fig. 13 at 1 MHz. 
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Figure 18: Structure of a four-layer solenoid. Two 
of the three inner layers are a part of the same 
winding while the other inner layer is left open cir
cuited. The outer layer carries a current equal to 
the sum of the currents in the two current-carrying 
inner layers. 

is some small variation in the phase of H,, ( x), the mag
nitude of H,, ( x) varies essentially linearly across each of 
the four layers. To avoid unnecessary cluttering of the 
drawings, there are no magnetic-field-intensity phasors 
plotted in the three interlayer gaps, since the phasors 
are assumed to be constant in these regions. The solid 
line that would be connecting their tips is shown, how
ever. Also note that the layer between x = 0.9 mm 
and x = 1.6 mm has exactly the same boundary con
ditions as the single layer that is illustrated in Sec
tion 3.2. Therefore, at each frequency, the layer be
tween x = 0.9 mm and x = 1.6 mm exhibits the exact 
same JL(x) and .ly(x) distributions as is seen for the 
single-layer example of Section 3.2. · 

The plot of the current-density phasors on the lower 
set of axes and the values in the data table of Fig. 16 
suggest that at 1 kHz the current in each of the four 
layers is almost uniformly distributed, since the mag
nitude and phase of .ly(x) across each layer is approx
imately constant. Also, we see from Fig. 16 that the 
current density in the outer layer is three times greater 
in magnitude, and 180° out of phase with respect to 
the current density in each of the three inner layers. 
Therefore, if we consider each of our layers to consist 
of a single turn of conductor, then the instantaneous 
sum of the ampere-turns across the four layers is, in 
fact, zero. 

Figure 17 shows the magnetic-field-intensity and 
current-density phasor distributions at an excitation 
frequency of 1 MHz, together with a _tab!e o~ corre
sponding data points. Although the d1Stnbutions for 
the 10 kHz and 100 kHz cases are not shown here, the 
changes in the phasor distributions across each of the 
four layers as frequency increases are sim~lar to ~hose of 
the single layer example discussed above m Sect10~ 3.2. 
In general, as the frequency increases, the magnitude 
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Figure 19: H,.(x) and ,l
11

(x) phasor distributions 
across the four-layer solenoid of Fig. 18 at 1 kHz. 

of both H z(x) and ,l
11
(x) becomes attenuated near the 

center of each layer, while the magnitude of ,l
11
(x) be

comes much greater near the surfaces of each layer. In 
other words, the diminishing ability of the alternat
ing magnetic field to penetrate deep into each winding 
layer causes the current to be concentrated in regions 
near the surfaces of each layer. 

A final example that we consider is illustrated in 
Fig. 18. Once again, this four-layer solenoid is modeled 
with four infinite conducting sheets, and a four-layer 
total of zero ampere-turns is intentionally established 
so that the solenoid resembles a real transformer with 
a high-permeability core. In this case, however, we 
choose two of the inner winding layers to carry 1.5 
units of current each, and the outer winding to carry 
3 units of current. Thus, one of the inner windings 
is left open-circuited, so that it has zero net current. 
Figures 19 and 20 show the distributions of H z(x) and 
.lg(x) at excitation frequencies of 1 kHz and 1 MHz, 
respectively. These distributions look somewhat sim
ilar to those seen in Figs. 16 and 17. On the lower 
set of axes in Fig. 19, no current flows in the .open
circuited winding layer which lies between x = 0.9 mm 
and x = 1.6 mm. However, as the frequency increases, 
we begin to see some current flow; for the 1 MHz case 
of Fig. 20, there are large current densities that appear 
in the open-circuited layer. Nevertheless, the net cur
rent density in this layer at any instant in time is still 
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Figure 20: H,.(x) and .ly(x) phasor distributions 
across the four-layer solenoid of Fig. 18 at 1 MHz. 

zero (as it must be) since there is an equal amount of 
current flowing in both the negative and the positive 
directions. 

5 CONCLUSIONS 
One single-layer and two four-layer example winding 
structures are used to illustrate the impact of exci
tation frequency on the magnetic-field-intensity and 
current-density distributions in transformer windings. 
By plotting the distributions as phasors in three
dimensional isometric plots, greater insight is gained 
into the origin and behavior of eddy currents. This 
insight enhances the design engineer's ability to un
derstand and evaluate the available design options. 
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