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Abstract

The paper presents analysis, design, and application of a high-voliage.
high-power, zero-voltage switched, fill-bridge PWM comerter with an
active snubber in the secondary circuit. The nondissipative smubber com-

pletely eliminates the voltage overshool and ringing across the rectifiers

{. Introduction

The research and application of zcro-voltage switching (7VS) for
the class of PWM converters is gaining increasing attention, as this
converter family promises to combine the simplicity of PWM convert-
ers with the soft switching characteristics of resonant converters. A
member of this family that is most widely vsed, especially in high-
power and high-voltage applications, is the ZVS full-bridge (I'B) PWM
(ZVS-FB-PWM) converter {1-5]. This converter is controlled by the
phase-shifted PWM technique which cnables the use of all parasitic
elements in the bridge to provide ZVS conditions for the active

switches.

This topology, however, does not provide any means ofnlwséyrlwing
the parasitic capacitances of the rectifier diodes. The interaction of
rectifier capacitances with the leakage inductance of the transformer
causes severe voltage overshoot and ringing across the rectifiers. This
problem is exacerbated by the necessity of a large leakage inductance
for the power transformer, resulting in a reduced ringing frequency.
This makes the use of RC snubber in the sccondary impractical 5],
The problem is particularly scevere in high-voltage, high-power appli-
cations, where the reverse recovery time of the rectifiers is excessive,

because Schottky diodes cannot be used.

' Fhe work was supported by the International Business NMachines Co.,
Kingston, NY, and by (he Virginia Center for Innovative Technology,
Technology Development Center for Power Flectronics.
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Fig. t. : ZVS-FB-PWM converter with the active snubber.

Scveral solutions to this problem have been suggested. The sim-
plest one [2] is to use a clamp circuit across the reetifiers. The clamp
circuit limits the peak voltage in the secondary, but docs nothing to
damp or prevent the ringing. The excessive ringing couses "M and
control problems. The amount of power dissipation of the clamp cir-
cuit also makes it impractical for use in high-voltage. high-power ap-

plications above several hundred volts and several kilowatts

Another attempt is to use a fow-leakage power transformer with
a scparate inductor in the primary, and to clamp the voltage in the
primary circuit [3,4]. This approach has two drawbacks. Onc is the
requirement for an extra inductor, which increases the size and reduces
the efficiency of the converter. The other is the high frequency ringing
between the parasitic capacitance of the rectifiers and the leakage
inductance, which may require the use of an RC snubber in the see-

ondary.

This paper presents the analysis, design, and application of the
ZVS-I'B-PWM converter with an active snubber across the rectifiers,
The snubber completely climinates voltage overshoof and ringing io a
nondissipative manner. These attributes make the snubher patienfarly

usclul in high-voltage, high-power applications.



2. Proposed Converter

The proposed converter is shown in Tig. 1. When the secondary
voltage is high, the active snubber, (Qs, Dy, (%), connccts a large
capacitor in parallel with the rectificrs. The resonant frequency of the

snubber capacitor and leakage inductance has to be small compared to

the switching frequency, i.e. Z7r\/n-'l,[/,(,_Y > 715, where 77 is the switch-
ing period.  Consequently, the rectifier voltage is clamped to the
steady-state value of the snubber capacitor voltage, and there is no

voltage overshoot in the secondary.

In steady-statc operation, the average current through the snubber
capacitor is zero. The encrgy from the leakage inductance of the
transformer charges the snubber capacitor through the snubber diode.
The capacitor delivers this energy to the load through the snubber
MOSFELT.

I'he bridge is operated with phasc-shift control in the same man-
ner as in the conventional ZVS-UB-PWM converter [1.2.3,5]. Fignre
2 shows the typical waveforms for the converter with the snubber cir-
cnit, the current through the snubber capacitor. and the driver signal
of the snubber MOSFT'T. The converter operation for a half cycle is

described as follows:

t; 1o 1;: In the primary. Qs and Py are conducting. In the sccondary
Dr and Dy are conducting. The primary current follows the
output filter current.

P Q4 turns off, and the current through the primary charges the

output capacitance of Q4 and discharges the output

capacitance of Q. turning on diode D;.

Diode 17 starts condncting, and immediately alter that, Q; is

turned on with zero voltage.

In the secondary, all four diodes start conducting, shorting the

sccondary of the transformer.

tz to 15 The primary current circulates through diodes Py and D,
until it reaches zero. The sccondary of the transformer is
shorted.

t: 1ot Prmary current circulates through Oy and (. The sccondan
of the transformer is shorted.

e The primary current reaches the reflected filter inductor cur-
rent.

ty to ts: The voltage in the sccondary of the transformer starts in-
creasing. and the leakage inductance of the tansformer starts
resonating with the rectifier diodes” capacitance.

I I'he secondary voltage, 15, reaches the snubber capacitor
voltage, and the snubber diode starts condncting. The see
ondary is clamped to the value of the snubber capacitor volt-
age-

ts 1o t:: The current through the snubber capacitor decreases nntil it
reverses sign at fg. At this time the snubber MOSEET has

to be already turned on.

Fig. 2. : FB-ZVS-PWM converter and primary and secondary

waveforms, snubber’s current, and Qg gate drive signal.

75 The snubber current naturally commutates from Dy to Q.
TFor this reason D; docs not need to be a fast diode, and the
body diode of Q is used.

15 to t;: The current through the snubber capacitor flows through the
MOSTFET Qs until Oy is turnced off. ‘The snubber MOSEET
has to be turned off when the sccondary voltage starts de-
creasing.

t7: When the voltage in the sccondary starts decreasing, the pri-
mary current is smaller than the reflected filter inductor cur-
rent. Thercfore. the output filter inductor current starts
frec-wheeling through the rectifiers. The sccondary of the
transformer is shorted.

The current in the leakage inductance, charges the output
capacitance of () and discharges the capacitance of Q3; the
diode Dj is subsequently turned on.

1 Diode D3 starts conducting, and immediately after that, O3
is turned on with zcro voltage.

t> to tg: ‘The primary current remains constant (assnming that the
switches have zcro on resistance and the diodes have zero
forward drop). The sccondary is still shorted.

a: The primary current reaches the reflected  output filter

inductor current. Rectifier diodes D, and D4 stop conducting,

The most important changes in the converter operation due to the in-

troduction of the snubber arc:
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®  ‘There is no ringing in the secondary voltage, reducing the voltage
stress in the rectifiers and eliminating snubber losscs.

@ The transformer secondary current is the sum of the output filter
inductor current and the current through the snubber capacitor.

e T'he peak primary current is reduced because the current through
the snubber capacitor is negative when the output filter inductor
current reaches its peak.

e The ZVS for QO and Q3 is achieved in exactly the same manner
as for Q2 and Q4. The output filter inductor docs not intervene in

the process.

3. Analysis

Assuming that the snubber capacitor is chosen sufficiently large,
the voltage in the secondary is a square wave with a peak value cqual
to the voltage across the snubber capacitor. Conscquently, the output
voltage, Vo, is determined by the duty cycle of the sccondary voltage,

Dygr, and the snubber capacitor voltage, ¥, as:

Vnuz = I)e// er . (m

Previous analysis of the ZVS-FB-PWM converter [§] shows how
to calculate the primary duty cycle, P, knowing the circuit parameters.
That part of the analysis is also valid for this circuit. 'T'he goal of the

analysis presented here is to determine the snubber capacitor voltage.

During the interval ts 10 t5 the slope, Sys, of the transformer sec-

ondary current is determined by:

n ¥V, - '/cs (

Spp=——7—""1

n I‘lic

where Vi, is the input voltage, n is the transformer turns ratio (
n=NyNp), Ves is the steady state voltage of the snubber capacitor, and
Ly is the leakage inductance of the transformer. ‘The current through
the snubber capacitor is the difference between the secondary current

and the filter inductor current. The slope of the snubber capacitor cur-

rent is:
IV LA V4
_ nl in ! €5 ! €5 I oul 3
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n Ly 7

where Vo is the output voltage and /s is the value of the output filter

inductor.

The difference between transformer secondary current and the fil-
ter inductor current at time |, ts, corresponds to the resonance between
Ly and the rectifiers capacitance when the secondary voltage reaches
Ies, plus the reverse recovery current through the rectifiers that are
turned off.  Assuming that the rectifiers capacitance is constant, this

current difference, Aigee, can be calculated as (2]
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Fig. 3. : Ratio of ¥s/ Ve vs. sccondary duty cycle: For leakage
inductances 5 pll, 25 pll, and 50 pI1.
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where  Csee 18 the sum  of rectifiers and  transformer  winding
capacitances, and iy is the peak reverse current throngh one rectifier

diode due to the reverse recovery.

Since the average current through the snubber capacitor is zero in
steady state, the following implicit expression for the snubber capacitor

voltage is obtained:

(%)

where 77 is the switching period.

Using Tig. (1. ¥q. (5) can be written as a function of the cffective

duty cycle:
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This equation can be solved explicitly for 17¢ (the solution is

provided in the appendix).

To illustrate the variation of Vs with respeet to Doy o is com-
pared with the steady state secondary voltage in the ideal casc,

Cee = 0, and i, = 0. In this idecal case , Lig. (6) gives:

L

)
VienV, — (7

2
I./ + (1 — I)P/) n ]'11.-

Figure 3 shows the ratio V. /1% as a function of D,z for different

values of 1 and for the following circuit paramcters:

o iyl =064
o Coee = 130 p1
o Vi =600 1
. /,[= 300 1t
on=1

o Ji=10pscc.

The graph in Tiig. 3 shows several things that influcnce the design
of the converter with the snubber. First, the steady-state secondary
voltage with the snubber is always higher than the secondary voltage
in the idcal case; the secondary voltage increases with an increase of
Ly and/or Cgee. Second, there is a sharp increase in 17, as Dy is small
( less than 0.2 ). This operation area should he avoided. because of the

increased voltage stress on the rectifier diodes.

Figure 3 docs is not shown for values of duty cycle smaller than
.05 because these duty cycles correspond to a time shorter than the
time required for the secondary voltage to rise (ie.. Doy = 0.05, or
Doy 17 = 0.25 psec. ) Tor these small duty evcles Fq. (6) is not valid.
The rising time of the secondary voltage can be caleulated from know-

ing the leakage inductance and the total capacitance in the secondary:

Mg Coe (%)

(=
rive T 3N
where 1550 corresponds o the time required for the sccondary voltage

to reach n Vin.

4. Experimental Realization

T'he breadboard used to test the presented active snubber concept

and analysis has the following specifications (Iig. 1):

Fig. 4. : Without active snubber: Voltage and current in the
primary (top waveforms) and voltage across the rectifier
(lower waveform), full-load operation. (Scales: voltage:
200 V/div., vurrent: § A/div., time: 2 gscc/div.)

Fig. 5. : With active snubber Primary and sccondary voltages
(top waveforms) and primary and snubber currents (lower
waveforms), full-load operation. (Scales: voltage: 200
V/div., current: 2 Afdiv., time: 1 gsec/div.)

@ input voltage V;, = 600 1

® output voltage ¥y, = 360 1V

® output Power P,y = 2 kI

® switching frequency f; = 100 k//z
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o transformer turns ratio n= |

® maximum primary duty cycle Dyay = 0.8

® secondary duty cycle Deyr= 0.6

o transformer leakage inductance Ly = 52 pff
o rectifier’s diodes capacitance Cgee = 130 pl”

® peak reverse recovery current liy| = 0.6 4.

Vigure 4 shows the converter waveforms at full-load using the
clamp circuit proposed in [2,5]. Figure 5 shows the corresponding
waveforms at the same power level (2 kW) using the active snubber.

‘The severe ringing seen in Fig. § is completely eliminated.

T'igure 6 shows the converter waveforms at power level of 1 kW,
The current through the snubber capacitor has not changed signil-

icantly. This supports the assumption that was used to derive Tiq. (6).

The slopc of the current when reverse voltage is applicd to the
diodes is limited by the leakage inductance. Consequently /, is rela-
tively small and does not vary significantly with the load current.
Thercfore, the snubber capacitor voltage is almost independent of the

converter load current.

Iiigure 7 shows the values of secondary voltage, 1, .. as a function

of Dy as predicted by Liq. (6) and the measurcments of V..

lig. 6. : With active snubber at 56 % load Primary and sec-
ondary voltages (top waveforms) and primary and snubber
currents (lower waveforms), full-load operation. (Scales:
voltage: 200 V /div., current: 2 A/div., time: 1 gscc/div.)
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Fig. 7. : Snubber capacitor voltage vs. sccondary duty cycle

Calculated (solid line) and measured (dashed line).

4.1. Control of the snubber

The gate-drive signal for Qs can be gencrated by sensing the scc-
ondary voltage of the power transformer and turning on () whenever
this voltage reaches 1. Tlowever, a simplified the gate drive is pro-
posed without sensing the secondary voltage of the power transformer.

Block diagram of this gate drive circuit is shown in Vig, 8.

Since the transformer sccondary voltage 1s delayed (¢ — 15, lig.
2). the switch Qg has to be turned on with a delay . ¢4, greater than the
maximum delay of the sccondary voltage. The maximum delay of the
secondary voltage occurs at full-load low-linc. Since in this casc iy is

fixed, for proper circuit operation, g and ADyy have to satisfy

an <2 1<

max ~ 7

(9

.
where Dmin is the primary duty cycle at minimum load, and Dy, is

defined as ADmay = Dinax — Degy (at full-load low-line),

5. Conclusions

The ringing hetween the leakage inductance of the transformer and
the parasitic capacitance of the rectifier diodes represents the main ob-
stacle for using the ZVS-I'B-PWM converter in high-voltage, high-

power applications. 'The ringing imposes a severe voltage stress on the



rectifier diodes, and calls for use of some kind of snubber circuit in the
sccondary. At high power and voltage levels, the energy of this ringing
is so high that the usc of any type of dissipative snubber becomes im-

practical.

The paper presents the solution to this problem. ‘Fhe proposed
active snubber used in the sccondary completely eliminates the ringing.
This significantly reduces the voltage stress on the rectifiers, making

possible the usc of faster, lower voltage rectifier diodes.

The ringing of the parasitic capacitance of the rectifiers and the
leakage inductance of the transformer is eliminated in a nondissipative
manner, thus increasing the overall efficiency of the circuit. The active
snubber employs only a high-voltage low-power MOSFET and a
high-voltage capacitor. The control of the snubber switch is simple and
utilizes the PWM signal controlling the primary switches with a time

delay.

The paper also presents the complete steady-state analysis of the
ZVS-I'B-PWM converter employing the active snubber. 'The analysis
shows that the transformer secondary voltage is a function of the
steady-state duty cycle, and gives the equation to calenlate the steady-
state secondary voltage. The breadboard built shows the validity of the
proposed solution. The results of the analysis arc in good agreement

with the experimental results.
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Appendix

An explicit expression for the voltage . can be obtained from
Fq. (6) as follows:
Using

in Eq. (6), and solving for V,

2 !
vo—xe Xy, “2)
where
X=EnV,+Flil (A.3)
L2 ., 2 .
Y=GnV,—Hli| —®nV, il (4.4)
P=AR+o L (4.5
z(?
F=®A (1.6)
2
G=0n (A7)
H=2r (A-8)
with:
(4.9
DT -0
P 21 _— (A.10)
4 n Ly, I/'
DT
n= ._"Z. ! A.11
an Iy,
1
o= 3 . (A.12)
A + Y
7
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