# RIDLEY WEBINAR SERIES: 9 CORE LOSS MODELING



Webinar November 12, 2020 10 am PDT Downloads: 9 Core Loss Modeling.pdf



#### **Core Loss Modeling – the Players**



Charles Proteus Steinmetz – great GE engineer working from the late 1890s.

Dr. Vatché Vorpérian – one of the best minds in our industry taught me about fractal mathematics.





Dr. Qichen Yang – solved complex mathematical problems for me involving 6<sup>th</sup> order circuit optimization. Dr. Shilpa Marti – spent 3 weeks reading and transcribing core loss data for us so that you don't have to do that anymore.





Arthur Nace – retired aerospace engineer and programmer who automated LTspice models for us. John Beecroft – Primary tester and proponent of RidleyWorks for over 20 years.



#### **Semiconductor Devices and Models**



These are impossibly complex structures to build and understand.

Yet they usually come with a spice model that's pretty useful.





#### **Magnetics Devices and Models**



Not so hard to build, although maybe hard to understand.

Doesn't compare to Schroedinger's equations.....

Where is the spice model





### **Magnetics Winding Loss Models**









New Rac Model

Ridley Engineering Complex proximity loss models covered in this webinar



https://ridleyengineering.com/videos-e/304-magneticsproximity-loss-webinar.html

#### Core Loss MPP 200u

## Core Loss Density Curves - MPP 200µ, 300µ



300 kHz 0.1 T 5 W/cm3



#### **Core Loss PC95**





300 kHz 0.1 T 0.350 W/cm3 > 10 times better than MPP



#### **Steinmetz Equation**

Material: PC95

$$P_c = kf^x \Delta B^y$$

Equation assumes curves are

- 1) Equally spaced with frequency
- 2) Equal slopes at different frequencies

Steinmetz Equation named for Charles Steinmetz, he introduced a form of this equation in **1892**. Core loss was a problem even at 50/60 Hz





### **Use Excel to Calculate Coefficients**



### **Early Transformer Core Loss Model**



Simple resistor captured some of the loss characteristics

Frequency was fixed to line distribution frequency (change resistor value for different frequency)

Hysteresis losses captured for sinewave excitation – flux exponent assumed to be 2



**Parallel Ladder Network - Frequency Dependence** 

$$P_c = kf^x \Delta B^y$$



Parallel ladder driven by the inductor or transformer voltage

Frequency dependent dissipation matches frequency exponent

This will give a flux exponent of 2, like the early core loss models



#### **Parallel Ladder Network – Adding y Exponent**



Parallel ladder driven by the inductor or transformer voltage

Magnetic winding voltage is raised to the y/2 power

Waveform sign must stay the same



### **Data Entry and Model Generation**

|                                          | ORMER CORE           | MATERIAL SELE                  | CTION ——                        |               |                      |                  |               |                         |           |               |
|------------------------------------------|----------------------|--------------------------------|---------------------------------|---------------|----------------------|------------------|---------------|-------------------------|-----------|---------------|
| Ferroxcube                               |                      | TDK                            |                                 | Magnetics     | Any                  |                  |               |                         |           |               |
| O 3C90                                   | C 3C91               | C PC40                         | O PC47                          | ОР            | C MPP 200u           | C New 11         |               |                         |           |               |
| C 3F3                                    | C New                | C PC90                         | ○ New                           | € F           | C New 8              | C New 12         | DATA          | Core Material Loss Data |           |               |
| © 3C96                                   | ○ New                | C PC44                         | ○ New                           | ○ R           | C New 9              | O New 13         |               | Core Manufacturer       | Magnetic  | Magnetics     |
|                                          |                      | C PC95                         |                                 | ○ New         | C New 10             | O New 14         |               | Core Material           | E         | F             |
|                                          |                      |                                |                                 |               | Temperature          | data used: 100 d | egrees C      | Core Material           |           |               |
| CHARACTERISTICS FOR<br>Permeability 3000 |                      | SELECTED MATE<br>Magnetizing I | ATERIAL<br>Ig Inductance 0.3311 |               | Core Loss 0.4        | 176 W            | 1             | 60 Degrees C            | Loss Data | (mW/cm3)      |
| PSIM/LTSPICE CORE LOSS MODEL             |                      |                                |                                 |               |                      | Steinmetz        | 100 kHz 0.1 T | 140                     | 140       |               |
| Inductors                                | 6 561 mH             | 104                            | 22.544 mł                       | Resisto       | 20.13 0              | RC5              | 138 66079 k0  | 100 kHz 0.2 T           | 760       | 760           |
| LC2                                      | 9.907 mH             | LC5                            | 34.865 mF                       | H RC2         | 182.42 Ω             | RC6              | 999.41181 kΩ  | 200 kHz 0.1 T           | 363       | 363           |
| LC3                                      | 14.963 mH            | 2 538                          | 41.882 mF                       | Steinmetz Coe | fficients            | RC7              | 10.67 MΩ      |                         | New Value | Current Value |
| Volta                                    | se exponent          | 2.000                          |                                 |               |                      |                  |               | 100 Degrees C           |           |               |
|                                          |                      |                                |                                 | Core N        | 1aterial             |                  | F             | 100 kHz 0.1 T           | 105       | 105           |
|                                          | (+)VPV               |                                |                                 | Core N        | lanufacturer         |                  | Magnetics     | 100 kHz 0.2 T           | 610       | 610           |
|                                          | Ĭ                    | ຊີ LC1 ຊື                      | ] LC2 ] LC3                     |               |                      |                  |               | 200 kHz 0.1 T           | 260       | 260           |
|                                          |                      | <b>_</b> ,                     | []                              |               | $P_{core} = K\Delta$ | $B^{x}f^{y}$     | 2             |                         |           | ок            |
|                                          |                      |                                |                                 |               |                      |                  | Steinmetz     |                         |           |               |
|                                          |                      |                                |                                 | Consta        | int K                |                  | 87.738        |                         |           |               |
|                                          | Flux exponent x      |                                |                                 |               |                      | 2.538            |               |                         |           |               |
|                                          | Frequency Exponent y |                                |                                 |               |                      | 1.308            |               |                         |           |               |

Ridley Engineering

#### **Fully Automated PSIM and LTspice Models**



#### Transformer Core Loss Model

.param CLexp=2.160964 .param Rc1=40705.33 .param Rc2=139656.09 .param Rc3=479205.38 .param Rc4=1640976.57 .param Rc5=5814347.47 .param Rc6=12931115.75 .param Rc7=117724615.34 .param Lc1=7.600474 .param Lc2=4.346083 .param Lc3=2.48547 .param Lc4=1.418528 .param Lc5=0.837693 .param Lc6=0.310505 .param Coupling=0.007820



### **LTspice Simulation Results**



### **High Line Input**



#### Hands-On Design Workshops



January 25-28, February 22-25

This is our brand-new workshop format where we ship you everything you need to design, test, and learn. Magnetics kits with cores, bobbins and wire, custom computer and software, oscilloscope, frequency response analyzer, power supplies, load banks, test boards and parts kits are included. It's a learning experience like no other where we teach real-time and monitor each of your individual test stations from our base in California.

All attendees receive course notes and their personal copy of RidleyWorks to greatly accelerate your design process.





#### Email <u>info@ridleyengineering.com</u> For full demo

0

.

**Frequency Response Analyzers** 

#### Power Supply Design Center Facebook Group





#### Power Supply Design Center Articles









#### 

Power Stage Designer Power Stage Waveforms Magnetics Designer Transfer Function Bode Plots Closed Loop Design Automated FRA Control LTspice® Automated Link PSIM® Automated Link



#### 4-Channel Frequency Response Analyzer

Frequency Range 1 Hz - 20 MHZ Source Control from 1 mV - 4 V P-P Built-In Injection Isolator Bandwidth 1 Hz - 1 kHz Automated Setup from RidleyWorks® Drect Data Flow into RidleyWorks®



#### 4-Channel 200 MHz Oscilloscope

Picoscope<sup>®</sup> 5444D 4-Channel Oscilloscope 200 MHz Bandwidth 1 GS/s at 8-bit res; 62.5 MS/s at 16-bit res Signal Generator up to 20 MHZ Computer Controlled



Ridley Engineering

#### **Embedded Computer**

Intel<sup>®</sup> Computer with 32 GB RAM, 256 GB SSD Intel<sup>®</sup> HD Graphics 620 Integrated Dual Band Wireless, Bluetooth 4.2 Dual HDMI and USB Ports, Ethernet

