# **Flyback Converter Design**

Webinar June 26 2025 10:00 am PDT

Dr. Ray Ridley

**Ridley Engineering** 



# **Our Organizers Today**



Arthur Nace – Retired aerospace engineer and programmer who automated LTspice models for us. Our longest user of RidleyWorks.

John Beecroft – Course instructor with Ridley Engineering for 20 years.





Denise Ridley – The marketing and business brains behind Ridley Engineering. Denise made our workshops happen 25 years ago.





MAY 18, 1928 - MAY 23, 2025

Lloyd Henry Dixon Jr., age 97, of Naples, Florida passed away on Friday, May 23, 2025.

**Download Lloyd Dixon's Magnetics Handbook** 



# **Flyback Design Choices**

CCM or DCM – not a binary choice

**Quasi-Resonant** 

**RHP Zeros** 

**RCD clamp** 

Isolated Feedback TL431

**Cross Regulation** 

Snubbers

Active clamp



# **Converter Specifications**





# DCM or CCM?





## **Default Design > 10W CCM Operation**



Switch Current (A)





**Deeper CCM Bigger inductor Value** 



## DCM or CCM?

Low Line CCM



#### Low Line DCM



Deeper DCM Smaller Inductor Value



# **Quasi-Resonant? How Much?**

Low Line DCM 30:1 Step Down (versus 11:1)



QR Mode Change in frequency Increase inductance to lower the frequency Peak Current Reduces

QR Mode High Line QR Mode 290 kHz

Ridley Engineering



# **CCM vs Full Quasi-Resonant**

Redesign CCM with 0.64 Dmax 200 kHz frequency





#### Secondary Current CCM

#### Secondary Current QR DCM



# **Magnetics for the Flyback**

High level designer now in RidleyWorks

Real intelligence based on 40 years experience

**Core selection** 

Winding design

**Core losses** 

**Proximity losses** 

Multiple designs in very short time







# **Transformer Design CCM and QR**









| #2 Saved Transformer Design CCM |                       |         |
|---------------------------------|-----------------------|---------|
| Magnetizing Inductance          | 2849.73               | uH      |
| Primary Current Limit           | 0.382                 | Α       |
| Core Type                       | RM6                   |         |
| Core Area                       | 0.31                  | sq. cm  |
| Core Material                   | R                     |         |
| B max                           | 0.297                 | т       |
| Approximate Gap                 | 0.19 / 18.4           | mm/mils |
| AL Value                        | 204.66                | nH/n2   |
| Leakage Inductance              | 21.93                 | uH      |
| Primary Turns                   | 118                   |         |
| Wire Type                       | Magnet Wire           |         |
| Wire Size                       | 33                    | awg     |
| Layers                          | 4                     | Split   |
| Number of Strands               | 1                     |         |
| Each End Margin                 | 0.00                  | mm      |
| Insulation                      | 0.000                 | mm      |
| Window Used                     | 36.0                  | %       |
| DC Resistance                   | 2.0                   | Ohm     |
| Secondary Turns                 | 7                     |         |
| Wire Type                       | Triple Insulated Wire |         |
| Wire Size                       | 20                    | awg     |
| Layers                          | 1                     |         |
| Number of Strands               | 1                     |         |
| Each End Margin                 | 0.00                  | mm      |
| Insulation                      | 0.000                 | mils    |
| Window Used                     | 40.8                  | %       |
| DC Resistance                   | 7.5                   | mOhm    |

**Ridley**<sup>I</sup>Q<sup>™</sup>

#### RM6

#### 

| #1 Saved Transformer Design QR DCM |                       |         |
|------------------------------------|-----------------------|---------|
| Magnetizing Inductance             | 2114.71               | uH      |
| Primary Current Limit              | 0.529                 | Α       |
| Core Type                          | RM6                   |         |
| Core Area                          | 0.31                  | sq. cm  |
| Core Material                      | R                     |         |
| B max                              | 0.298                 | Т       |
| Approximate Gap                    | 0.26 / 34.4           | mm/mils |
| AL Value                           | 144.43                | nH/n2   |
| Leakage Inductance                 | 20.81                 | uH      |
| Primary Turns                      | 121                   |         |
| Wire Type                          | Magnet Wire           |         |
| Wire Size                          | 33                    | awg     |
| Layers                             | 4                     | Split   |
| Number of Strands                  | 1                     |         |
| Each End Margin                    | 0.00                  | mm      |
| Insulation                         | 0.000                 | mm      |
| Window Used                        | 36.0                  | %       |
| DC Resistance                      | 2.0                   | Ohm     |
| Secondary Turns                    | 4                     |         |
| Wire Type                          | Triple Insulated Wire |         |
| Wire Size                          | 22                    | awg     |
| Layers                             | 1                     |         |
| Number of Strands                  | 2                     |         |
| Each End Margin                    | 0.00                  | mm      |
| Insulation                         | 0.000                 | mils    |
| Window Used                        | 33.5                  | %       |
| DC Resistance                      | 3.4                   | mOhm    |

#### Ridley Engineering

## **RHP Zero Paranoia!**







Don't Worry about the RHP Zero Design the power stage wherever it wants to be

Ridley Engineering

## Elimination of the Double Pole is more Important than RHP Zero





Ridley Engineering The voltage-mode LC filter COMBINED with the RHP zero can be a little more difficult.

Low line full load is the key. Resonance is the highest, RHP zero is the lowest.

#### Solution-current-mode control!

# **RCD Clamp**







$$P_{sn}^{\max} = P_l \left( 1 + \frac{v_f}{v_x^{\max}} \right)$$

Dissipation is higher than the energy storage in the leakage inductor

The harder you clamp, the more the dissipation.

It sometimes looks like the RCD clamp is universal

It is not. All the products we have built did NOT use the RCD approach.

The RCD clamp still usually needs an RC snubber



# **RC Snubbers**





Dissipation can be higher than the energy storage in the leakage inductor

The harder you damp the ringing, the more the dissipation.

Do you need the diode snubber for DCM?





# **Active Clamp Flyback**



Lots of chips available

I'm not a fan. My job is to make sure none of my designs ever fail.

Too much complexity.

Two-Switch Flyback

Lower on-resistance

Rugged

Energy recovered

WCA is much easier!





# **TL431 Feedback**

R<sub>3</sub>

Rb

Ş

V <sub>bias pri</sub>

C₄ †



Ridley Engineering

# **Ridley Engineering's First Project (1991)**



12 VDC to 240 VAC Input (4 versions)

24 V 0.5 A Output

5 V auxiliary 0.1 A

Control primary bias winding 12 V 50 mA

Safety Isolation

UC2843 Controller (>50%)

100 kHz switching frequency

RC snubbers only

No feedback across isolation boundary

Transformer RM6 core



# **Ridley Engineering's First Project (1991)**



Problem: How to get the best coupling between the two outputs?



Regulation = +/- 20%

Change the Transformer Windings

Regulation = +/- 2%



# **Ridley Engineering's First Project (1991)**



The intricacies of winding arrangements in this small transformer enabled a 10,000 A breaker



### How to Learn More

RIDLEY

#### Email <u>info@ridleyengineering.com</u> For full demo



Education > Power Design Workshop > Intro

#### POWER SUPPLY DESIGN WORKSHOPS



#### **Frequency Response Analyzers**



Ridley Engineering 

### Power Supply Design Center Facebook Group

### **Power Supply Design Center Articles**







# 

Power Stage Designer Power Stage Waveforms Magnetics Designer Transfer Function Bode Plots Closed Loop Design Automated FRA Control LTspice® Automated Link LLC Designer



#### 4-Channel Frequency Response Analyzer

Frequency Range 1 Hz - 20 MHZ Source Control from 1 mV - 4 V P-P Built-In Injection Isolator Bandwidth 1 Hz - 1 kHz Automated Setup from RidleyWorks® Drect Data Flow into RidleyWorks®



#### 4-Channel 200 MHz Oscilloscope

Picoscope<sup>®</sup> 5444D 4-Channel Oscilloscope 200 MHz Bandwidth 1 GS/s at 8-bit res; 62.5 MS/s at 16-bit res Signal Generator up to 20 MHZ Computer Controlled



Ridley Engineering

#### **Embedded Computer**

Intel<sup>®</sup> Computer with 32 GB RAM, 256 GB SSD Intel<sup>®</sup> HD Graphics 620 Integrated Dual Band Wireless, Bluetooth 4.2 Dual HDMI and USB Ports, Ethernet

